
ENGSCI 355 Labs

Thomas Adams

2025-02-18

Table of contents

Preface 3

I Practical Lab 4

1 Operations System in Practice 5
1.1 Making Paper Cars . 5
1.2 Reflections . 6

II Conceptual Modelling 7

2 HCCM Framework 8
2.1 Understanding of the Problem Situation 8
2.2 Identification of Modelling and General Objectives 9
2.3 Defining Output Responses 9
2.4 Defining Input Factors 9
2.5 Model Content . 9

2.5.1 Identifying Entities 10
2.5.2 Drawing Behavioural Paths 10
2.5.3 Define the Data 10
2.5.4 Define the Structure 11
2.5.5 Define the Logic 12

2.6 Assumptions and Simplifications 12

3 Inputs, Outputs, and Behaviour 13
3.1 Understanding of the Problem Situation 13
3.2 Modelling Objectives . 13
3.3 General Objectives . 14
3.4 Defining Output Responses 14
3.5 Defining Input Factors 15
3.6 Identifying Entities . 15
3.7 Drawing Behavioural Paths 16

4 Data, Structure, and Logic 21
4.1 Define the Data . 21
4.2 Define the Structure . 21
4.3 Define the Logic . 25
4.4 Assumptions and Simplifications 28

III Jaamsim 30

5 Setting Up VSCode and Java 31

6 Setting Up JaamSim and HCCM 33
6.1 Prerequisites . 33
6.2 Create the Project Folder Structure 33
6.3 Clone HCCM into the project folder 33
6.4 Create files to load HCCM and customised components . . 34
6.5 Create a VSCode Java Project 34

2

6.6 Configure Source Folders 34
6.7 Configure JDK . 35
6.8 Configure Libraries . 35
6.9 Integrate with JaamSim 35
6.10 Run Custom JaamSim 35
6.11 Running an HCCM Model 36

7 Radiology Clinic 37
7.1 Experiments . 37
7.2 Jaamsim Model . 37

7.2.1 Creating Model Objects 37
7.2.2 Configuring Objects 40

7.3 Model Logic – Java . 42
7.4 Model Output . 46
7.5 Task . 49

8 Extended Radiology Clinic 50
8.1 Experiments . 50
8.2 Jaamsim Model . 50
8.3 Task . 55

9 Using Traces and Scenarios 56
9.1 Jaamsim Model . 56
9.2 Creating an Executable JAR File 58

IV Missing Data 60

10 Imputation Lab 61
10.1 Complete Data . 62
10.2 Mean Imputation . 62
10.3 Hotdeck Imputation . 62
10.4 Bootstrap Replication . 63
10.5 Multiple Imputation . 64

V Conceptual Models 66

11 Output Buffering 67
11.1 Data . 67
11.2 Components . 68
11.3 Activity Diagrams . 70
11.4 Logic . 71

12 Health Clinic 72
12.1 Data . 72
12.2 Components . 73
12.3 Activity Diagrams . 76
12.4 Logic . 77

13 Radiology Clinic 78
13.1 Data . 78
13.2 Components . 79
13.3 Activity Diagrams . 81
13.4 Logic . 82

14 Extended Radiology Clinic 83
14.1 Data . 83
14.2 Components . 84
14.3 Activity Diagrams . 87

3

14.4 Logic . 88

4

Preface

These are an online version of the Labs for ENGSCI 355. The topics covered
are: a hands-on simulation of a manufacturing process; conceptual mod-
elling using HCCM; implementing HCCM models in Jaamsim; and missing
data imputaton.

5

Part I

Practical Lab

1 Operations System in Practice

The goal of this lab is to give you some hands-on experience with an
operations system, the type of system that wewill be focussing on simulating.
Hopefully this will give you some idea of what is needed to simulate a system
in terms of:

• the components of the system and how they interact with each other
(entities and their behaviour);

• the type and amount of information/data that is needed, both for
activity durations and control policies;

• the types of experiments that can be performed and how the system
can be redesigned.

1.1 Making Paper Cars

The system that we will use as an example is making a car out of paper.
You will each be given a piece of paper with the net of paper car on it as in
Figure 1.1.

Figure 1.1: The Net Used to Make Paper Cars

You will also get a pair of scissors, some tape, and blank pieces of paper. To
make the car:

1. Trace the net onto a new piece of paper.
2. Cut the new net out.
3. Fold the paper and tape the edges shut placing the tabs on the inside.

Figure 1.2 shows an example of a completed car.

Figure 1.2: A Completed Car

First everyone should make one car by themselves. Once you have, show
one of the instructors to get signed off. Then, discuss with you group how
you can work together to make paper cars. You might want to experiment
with different setups/policies and try making a few cars to see how long it
takes and gather some data.
There will be a competition to see which group can make the most cars in
10 minutes. Before the time starts each group must submit an estimate of
how many cars they believe they will be able to make. The score for each
group will then be comprised of the following elements:

• 1 point for each car completed up to and including the estimated
number.

• 0.25 points for each car completed above the estimated number.
• -0.75 points for each car not completed in the estimated number.

Additionally, the following rules must be followed:
1. Each car must be traced and cut individually.
2. Cars must be the same shape as the original template, including tabs.
3. You can have as many stencils as you like.
4. All final cars must have started as a blank, unfolded piece of paper.
5. You may not have any pre-cut tape or nets.
6. All cars must have been made only by members of your group.
7. All cars must be folded and taped neatly to count. The lecturer has

final say on whether a car meets the required neatness.

7

1.2 Reflections

Now that you have attempted to make as many cars as you can you may
wish to reflect on the process by asking yourself the following questions:

• Did your group have any traced/cut out cars left at the end?
• What was the bottleneck/slowest part of the system?
• Did you collect any data/do any experiments? If so, did they help?

Would you do more/different ones now?
• What would you do differently next time?

8

Part II

Conceptual Modelling

2 HCCM Framework

This chapter describes the Hierarchical Control Conceptual Modelling
(HCCM) framework which is used to build a conceptual model, aligned with
the HCCM standard from lectures, that represents the practical activity, i.e.,
making paper cars, from Chapter 1.
Working in the same groups as for the practical activity and using this
chapter as guidance, over the next two labs you will work through the
phases for HCCM modelling shown in Figure 2.1 and complete templates
for those steps. In the next lab you will complete phases 1, 2, 3, and start
phase 4. The remainder of phase 4 will be completed in the lab after
that. Chapter 1 provides a partially completed conceptual model of the car
making system that you can use as a starting point.

Understanding of the
Problem Situation

Identification of
Modelling and

General Objectives

Defining Input Factors Defining Output Factors

Model Content
Structure Behaviour Data Logic

Phase 1

Phase 2

Phase 3

Phase 4

Figure 2.1: Conceptual Modelling Phases

2.1 Understanding of the Problem Situation

In Phase 1, in order to understand the problem situation, you need to
summarise what is happening in a concise way. There is no strict rule for
the best way to do this. One good approach is listening to the problem
“holder”, i.e., person/people who have the problem such as a client, then
reflecting what you have heard in a couple of paragraphs with lists of key

10

details and questions. You can then work through one or more iterations of
feedback and refinement to get a final, agreed upon problem description.

2.2 Identification of Modelling and General
Objectives

For Phase 2, as described in lectures, there are two types of objectives to
consider when developing a simulation:

“The second step deals with the determination of the objec-
tives. According to Robinson [26] they drive all aspects of the
modeling process and are a subset of an organization’s aims.
Further, objectives can be classified into modeling and general
objectives, where the latter are concerned with the flexibility,
run-speed, visual-display and model/component reuse.”

For the modelling objective you may like to think about what you trying to
discover using simulation, and what level of performance you are trying to
achieve in which areas/metrics.

2.3 Defining Output Responses

Phase 3 includes defining both the output responses and input factors. You
can do these in either order, but it can often be useful to define the output
responses first, as it may help you think about what inputs will influence
the outputs.
Output responses are things that can be measured and compared to under-
stand how a system has behaved/performed. They are the metrics used to
compare different simulation scenarios. The output responses should let
you know whether the modelling objectives have been achieved and why
or how. You may also want to consider how this will be reported (tables,
graphs, etc.).

2.4 Defining Input Factors

Input factors are things that can be changed and may modify how a system
behaves/performs. They are often defined to create multiple different
scenarios to compare via simulation. They are also what you can change to
try and achieve the modelling objectives.

2.5 Model Content

In Phase 4 the model content is defined. There is no strict order in which
you need to complete the four components (structre, behaviour, data, and
logic). A possible approach, that we will take in this lab, is to:

1. Identify the entities;
2. Draw the behavioural paths;
3. Define the data;
4. Define the structure (including the entities again);
5. Define the logic.

11

Using this approach you may still find yourself deciding to add/remove
parts that you have already defined. This is a normal part of the conceptual
modelling process, and you need to go back to the part of the process you
want to change – for example adding and entity or activity – and then
update the rest of the CM.
For the model content definition of our conceptual model we will follow
the new HCCM standard. This standard is presented in an academic article
(currently under review) that is available on Canvas under Modules >
Conceptual Modelling in the file hccm-standard.pdf

2.5.1 Identifying Entities

Before formally defining entities it is often useful to identify entities in the
system and whether they are active, i.e., have behaviour like a doctor or
patient, or passive, i.e., are part of the system that should be modelled but
that don’t have explicit behaviour like a waiting room with a given capacity,
but that doesn’t actually have defined actions.
The goal is to identify everything that is involved in a meaningful way in all
of the activities that are important to the system. Thinking about the inputs
and outputs can also be useful. Clearly the entities must be influenced in
some way by the inputs, and they must themselves influence the outputs.
You may also consider that an activity does not have a significant influence
on the performance of the system, and decide to exclude it – and therefore
any entities that are involved only in that activity. Likewise the participation
of a particular entity in an activity might be deemed inconsequential and
therefore excluded. Although it is possible to revisit and add/remove entities
later, at this stage you want to consider the whole system carefully, as it is
easier to include/exclude an entity now than to change it later.

2.5.2 Drawing Behavioural Paths

Once preliminary identification of entities has been done, behavioural paths
for each of the active entities should be drawn. These are essentially
flowcharts with a special structure. Circles represent events, usually used
when entities are arriving and leaving. Rectangles represent activities,
including when entities have to wait for another activity. Red squares at
the top left of an activity (or sometimes an event) let us know that some
logic is triggered when the activity starts. This generally occurs at the start
of “wait” activities and is used to check whether the conditions that mean
the entity can stop waiting and move on to the next activity are met.
What we are trying to do when drawing the behavioural paths is identify
the activities and events that the entities participate in, the possible orders
that these can occur in, and any points where some control logic needs to
be used.
Both when identifying the entities and drawing the behavioural paths it is
important to keep track of any assumptions and simplifications that you
make.

2.5.3 Define the Data

The data for the conceptual model includes both variables, and data mod-
ules. Variables can change their value throughout the simulation and are
generally used to store some information temporarily before it is required

12

https://canvas.auckland.ac.nz/courses/121185/modules/items/2554346

later in the simulation. Data modules contain the information that is needed
to perform the simulation and can be collected beforehand. Data mocules
can also represent the input/experimental factors – the things that may
change between different simulation scenarios. For each data module the
following information should be given:

1. The name of the data module;
2. The source of the data, where the information was obtained;
3. The way the data is modelled, is it represented by a constant, a

distribution, etc.
4. Whether the output is deterministic or stochastic;
5. The inputs that the module requires;
6. The quantity that the module outputs.

When presenting a conceptual model is useful to put the data first, as it is
often referenced throughout the rest of the conceptual model.

2.5.4 Define the Structure

To define the structure we start with formally defining the entities by listing
them along with any attributes that they have. Some common attributes,
such as ID number and the activity that the entity is currently participating
in, are often omitted to avoid repitition. Attributes are usually included
either to assist with the system behaviour – for example record whether a
patient has had a test – or to capture the perfomance of the system – how
long something has waited for.
Next we define the transitions. Each arrow on a behavioural diagram
corresponds to a transition. We can collate these in a table describing:
the entity that is performing the transition, and the events that the entity
transitions from and to. You can simply number them starting from 1, or
adopt a convention of using the entity’s initial as a prefix.
Once the transitions have been defined we can define the activities and
events. Usually these are presented in two tables, one for the activities
and one for the events. For each event (either standalone or as part of an
activity) the table should include:

1. The participant(s);
2. The type – either scheduled or controlled;
3. The state changes that occur when the event happens.

The main things that occur in state changes are:
• Schedule an end event – usually in the start event of an activity with

a scheduled end event;
• Starting another activity/event – this usually happens in a scheduled

end event where an entity is transitioning to another scheduled event;
• Trigger some logic – often in the start event of an activity with a

controlled end event.
The simulation start event, and arrive events are often more complicated
and involve scheduling the initial events and creating entities.

13

2.5.5 Define the Logic

The final part of the conceptual model content is the logic. Each trigger
that you drew in a behvioural path (the red squares) should correspond
first to a trigger statement in the state changes of an event, and a piece
of logic defined here. These pieces of logic are used to determine how the
system behaves – what activity an entity should do next. It is common to
have logic control the behaviour when one entity needs to wait for another,
as when the first entity arrives it needs to check whether the other is free
to perform an activity with it. The logic is usually presented as pseudocode,
alongside the entity that triggers the logic.

2.6 Assumptions and Simplifications

Throughout the four phases of the HCCM framework you should document
the assumptions and simplifications that you make. Assumptions are related
to uncertainties about the system being modelled, and are used to fill in
gaps in the information that is required for the simulation. Simplifications
are changes that are made to the model to make it easier to define or
implement.

14

3 Inputs, Outputs, and Behaviour

In this lab you will work with your group to complete the first three Phases
of the HCCM framework, and part of the fourth, as outlined in Chapter 2.
The goal is for you to gain experience using the HCCM framework, and
understand the initial steps in the process. To get the lab signed off your
group will need to complete the:

• understanding of the problem situation;
• modelling objectives;
• general objectives;
• output responses;
• input factors;
• entities;
• and behavioural paths.

3.1 Understanding of the Problem Situation

In the box below write a problem description for making paper cars, think
about what you are trying to solve/discover by simulating this activity. You
may want to look at Chapter 1 again to remind yourself about the process.

3.2 Modelling Objectives

In the box below write the modelling objectives for making paper cars, i.e.,
what are you trying to discover using simulation?

15

3.3 General Objectives

In the box below write the general objectives for making paper cars, i.e.,
what are some of the general properties you’d like your simulation to
have?

3.4 Defining Output Responses

In the box belowwrite the output responses for making paper cars, i.e., what
are you going to measure to determine the performance of the system?

16

3.5 Defining Input Factors

In the box below write the input factors for making paper cars, i.e., what
are you going to change to achieve the modelling objectives?

3.6 Identifying Entities

In the box below list the entities for making paper cars.

17

3.7 Drawing Behavioural Paths

The activity diagrams for the pencil & template, and scissors are given
below in Figures 3.1, and 3.2.

Pencil
(&Template)
Created

Pencil Wait
for Trace

Trace Car

P.T1

P.T2 P.T3

Figure 3.1: Pencil Activity Diagram

Scissors
Created

Scissors Wait
for Task

Cut Car Net
Cut Tape
(creates

Tape Pieces)

S.T1

S.T2 S.T3 S.T4 S.T5

Figure 3.2: Scissors Activity Diagram

18

In the boxes below draw the activity diagrams for the remaining entities.
Once you have completed all of the behavioural diagrams get all of your
work checked by a lab tutor.

19

20

21

4 Data, Structure, and Logic

In this lab you will complete the remainder of the fourth phase of the
HCCM framework, with your group. Again the goal is to give experience
using the HCCM framework, and understand how to formulate the detailed
components of a conceptual model. To get the lab signed off your group
will need to complete the:

• data modules;
• formal definition of entities;
• transitions;
• activities;
• events;
• logic;
• and both assumptions and simplifications.

4.1 Define the Data

Firstly, you need to give detailed definitions of the data modules. You may
not have collected data during car making, but complete the following
table that describes the kind of data you would need to collect to simulate
car making. Also add a comment on how the entry for CutTapeDuration
would change if no person-by-person data was available, but an Exponential
distribution that estimated the time it takes for a person to cut tape was
available.
Table 4.1: List of Data Modules

Name Source Model Type Input Output
NumPencils System info Constant Deterministic - The number of pencils available
NumScissors System info Constant Deterministic - The number of scissors available
NumTape System info Constant Deterministic - The number of rolls of tape available

System info Constant Deterministic -

TraceCarDur Experimental data Lookup Deterministic Person Time to trace car
CutNetDur Experimental data Lookup Deterministic Person Time to cut the net out

CutTapeDur Experimental data Lookup Deterministic Person Time to cut a piece of tape

4.2 Define the Structure

The first part of the structure to define is the entities. Table 4.2 lists the
entities again, but adds attributes that the entities will need to capture the

22

Table 4.2: List of Entities

Entity Attributes
Paper WaitForTrace[0.0]

WaitForCutShape[0.0]
WaitForFold[0.0]
WaitForTapeCube[0.0]

Pencil WaitForTrace[0.0]

Scissors WaitForTask[0.0]

Tape WaitForCut[0.0]

TapePieces WaitForTape[0.0]
ArrivalTime[0.0]
LeavingTime[0.0]

Person WaitForTask[0.0]

performance of the system, e.g., waiting time until the cube was cut. It is
assumed that all entities have the three attributes: ID, CurrentActivity, and
CurrentStart. These are omitted in the table to prevent repetition.
The next part of the structure is the transitions, which describe how en-
tities move between activities and events. Table 4.3 lists the transitions
for making paper cars. These transitions are prefixed by entity of the
behavioural pathway they come from. Complete the transitions for the
Scissors pathway.

Table 4.3: List of Transitions

Participant Name From Event To Event
Paper P.1 Paper Created Paper Wait for Trace.Start

P.2 Paper Wait for Trace.End Trace Car.Start
P.3 Trace Car.End Paper Wait for Cut Net.Start
P.4 Paper Wait for Cut Net.End Cut Car Net.Start
P.5 Cut Car Net.End Paper Wait for Fold.Start
P.6 Paper Wait for Fold.End Fold Car.Start
P.7 Fold Car.End Paper Wait for Tape.Start
P.8 Paper Wait for Tape.End Tape Car.Start
P.9 Tape Car.End Car Finished

Pencil N.1 Pencil/Template Created Pencil Wait for Trace.Start
N.2 Pencil Wait for Trace.End Trace Car.Start
N.3 Trace Car.End Pencil Wait for Trace.Start

Scissors S.1 Scissors Created
S.2
S.3
S.4
S.5

Tape T.1 Tape Created Tape Wait for Cut.Start
T.2 Tape Wait for Cut.End Cut Tape.Start
T.3 Cut Tape.End Tape Wait for Cut.Start

Tape Piece TP.1 Tape Pieces Created Tape Pieces Wait for Tape.Start

23

Table 4.3: List of Transitions

Participant Name From Event To Event
TP.2 Tape Pieces Wait for Tape.End Tape Car.Start
TP.3 Tape Car.End Tape Pieces Leave

Person H.1 Person Created Person Wait for Task.Start
H.2 Person Wait for Task.End Trace Car.Start
H.3 Trace Car.End Person Wait for Task.Start
H.4 Person Wait for Task.End Cut Car Net.Start
H.5 Cut Car Net.End Person Wait for Task.Start
H.6 Person Wait for Task.End Fold Car.Start
H.7 Fold Car.End Person Wait for Task.Start
H.8 Person Wait for Task.End Cut Tape.Start
H.9 Cut Tape.End Person Wait for Task.Start
H.10 Person Wait for Task.End Tape Car.Start
H.11 Tape Car.End Person Wait for Task.Start

Table 4.4 lists the activities from the behavioural pathway diagrams along
with the state changes for the start and end event of each activity. Complete
the activities for:

• Paper Wait for Tape Car
• Tape Car
• Person Wait for Task (Hint look at Scissors Wait for Task)

Table 4.4: Activities

Activity Participants Event Type State Change
Paper Wait
for Trace

Paper (P) Start Scheduled 1 (Default, omitted hereafter) P.CurrentActivity = "
this activity"

2 (Default, omitted hereafter) P.CurrentStart = TIME
3 TRIGGER OnStartPaperWaitForTrace WITH C

End Controlled 1 P.WaitForTrace = TIME - P.CurrentStart
2 # TRANSITION P.2 in logic

Trace Car Paper (P),
Person (H),
Pencil (N)

Start Controlled 1 SCHEDULE END at TIME + TraceCube(H)

End Scheduled 1 START Paper Wait for Cut Net WITH P # TRANSITION P.3
2 START Person Wait for Task WITH H # TRANSITION H.3
3 START Pencil Wait for Trace WITH N # TRANSITION N.3

Paper Wait
for Cut Net

Start 1 TRIGGER OnStartPaperWaitForCutNet WITH P

End 1 P.WaitForCutNet = TIME - P.CurrentStart
2 # TRANSITION P.4 in logic

Cut Car Net Paper (P),
Person (H),
Scissors (S)

Start Controlled 1 SCHEDULE END at TIME + CutNet(H)

End Scheduled 1 START Paper Wait for Fold WITH P # TRANSITION P.5
2 START Person Wait for Task WITH H # TRANSITION H.5
3 START Scissors Wait for Task WITH S # TRANSITION S.3

Paper Wait
for Fold

Paper (P) Start Scheduled 1 TRIGGER OnStartPaperWaitForFold WITH P

24

Table 4.4: Activities

Activity Participants Event Type State Change
End Controlled 1 P.WaitForFold = TIME - P.CurrentStart

2 # TRANSITION P.6 in logic

Fold Car Paper (P),
Person (H)

Start Controlled 1 SCHEDULE END at TIME + FoldCar(H)

End Scheduled 1 START Paper Wait for Tape Car WITH P # TRANSITION P.7
2 START Person Wait for Task WITH H # TRANSITION H.7

Paper Wait
for Tape Car

Start 1

End 1
2

Tape Car Start 1
End 1

2
3

Pencil Wait
for Trace

Pencil (N) Start Scheduled 1 TRIGGER OnStartPencilWaitForTrace WITH N

End Controlled 1 N.WaitForTrace = N.WaitForTrace + TIME - N.
CurrentStart

2 # TRANSITION N.2 in logic

Scissors
Wait for
Task

Scissors (S) Start Scheduled 1 TRIGGER OnStartScissorsWaitForTask WITH S

End Controlled 1 S.WaitForTask = S.WaitForTask + TIME - S.CurrentStart
2 # TRANSITION S.2 or S.4 in logic

Cut Tape Tape (T),
Person (H),
Scissors (S)

Start Controlled 1 SCHEDULE END at TIME + CutTape(H)

End Scheduled 1 START Person Wait for Task WITH H # TRANSITION H.9
2 START Scissors Wait for Task WITH S # TRANSITION S.5
3 START Tape Wait for Cut WITH T # TRANSITION T.3
4 CREATE Tape Pieces TP
5 START Tape Pieces Created WITH TP

Tape Wait
for Cut

Tape (T) Start Scheduled 1 TRIGGER OnStartTapeWaitForCut WITH T

End Controlled 1 T.WaitForCut = T.WaitForCut + TIME - T.CurrentStart
2 # TRANSITION T.2 in logic

Tape Pieces
Wait for
Tape

Tape Pieces
(TP)

Start Scheduled 1 TRIGGER OnStartTapePiecesWaitForTape WITH TP

End Controlled 1 TP.WaitForTape = TP.WaitForTape + TIME - TP.
CurrentStart

2 # TRANSITION TP.2 in logic

Person Wait
for Task

Start 1

End 1
2

25

Table 4.5 lists the events to start and finish the simulation along with the
events from the behavioural pathway diagrams along with the state changes
for each event. Complete the events for:

• Tape Pieces Created
• Person Created

Table 4.5: Events

Event Participants Type State Change
Simulation
Start

None Scheduled 1 FOR NumPaper DO
2 CREATE Paper P
3 START Paper Created WITH P
4 END FOR
5 FOR NumPencils DO
6 CREATE Pencil N
7 START Pencil/Template Created WITH N
8 END FOR
9 FOR NumScissors DO

10 CREATE Scissors S
11 START Scissors Created WITH S
12 END FOR
13 FOR NumTape DO
14 CREATE Tape T
15 START Tape Created WITH T
16 END FOR
17 FOR NumPeople DO
18 CREATE Person H
19 START Person Created WITH H
20 END FOR

Paper
Created

Paper (P) Scheduled 1 START Paper Wait for Trace WITH P # TRANSITION P.1

Car
Finished

Paper (P) Scheduled 1 Calculate statistics for P
2 REMOVE Paper P

Pencil/
Template
Created

Pencil (N) Scheduled 1 START Pencil Wait for Trace WITH N # TRANSITION N.1

Scissors
Created

Scissors (S) Scheduled 1 START Scissors Wait for Task WITH S # TRANSITION S.1

Tape
Created

Tape (T) Scheduled 1 START Tape Wait for Cut WITH T # TRANSITION T.1

Tape
Pieces
Created

1

Tape
Pieces
Leave

Tape Pieces
(TP)

Scheduled 1 Calculate statistics for TP
2 REMOVE Tape Pieces TP

Person
Created

1

Simulation
Finish

None Scheduled 1 Calculate statistics as required for Pencils, Scissors, Tape
, Person entities

26

4.3 Define the Logic

The last part of the structure to define is the logic. You need to define the
logic for each of the triggers (the red squares in the behavioural paths, and
TRIGGER statements in the state changes). Tables 4.6, to 4.14 show the
logic for some of the triggers. Complete the logic for: - OnStartTapeWait-
ForCut - OnStartCubeWaitForFold - the last condition of OnStartPerson-
WaitForTask

Table 4.6: OnStartPencilWaitForTrace

Triggered by: Pencil N
1 IF (any Paper P with P.CurrentActivity = Paper Wait for Trace) AND
2 (any Person H with H.CurrentActivity = Person Wait for Task) THEN
3 SELECT valid Paper P
4 SELECT valid Person H
5 START Trace Car WITH P, H, N
6 END IF

Table 4.7: OnStartScissorsWaitForTask

Triggered by: Scissors S
1 IF (any Paper P with P.CurrentActivity = Paper Wait for Cut Net) AND
2 (any Person H with H.CurrentActivity = Person Wait for Task) THEN
3 SELECT valid Paper P
4 SELECT valid Person H
5 START Cut Net WITH P, H, S
6 ELSE IF (any Tape T with T.CurrentActivity = Tape Wait for Cut) AND
7 (any Person H with H.CurrentActivity = Person Wait for Task) THEN
8 SELECT valid Tape T
9 SELECT valid Person H

10 START Cut Tape WITH T, H, S
11 END IF

Table 4.8: OnStartTapeWaitForCut

Triggered by: Tape T
1
2
3
4
5
6

Table 4.9: OnStartTapePiecesWaitForTape

Triggered by: Tape Pieces TP
1 IF (any Paper P with P.CurrentActivity = Paper Wait for Tape) AND
2 (any Person H with H.CurrentActivity = Person Wait for Task) THEN
3 SELECT valid Paper P
4 SELECT valid Person H
5 START Tape Car WITH P, H, TP
6 END IF

27

Table 4.10: OnStartPaperWaitForTrace

Triggered by: Paper P
1 IF (any Pencil N with N.CurrentActivity = Pencil Wait for Trace) AND
2 (any Person H with H.CurrentActivity = Person Wait for Task) THEN
3 SELECT valid Pencil N
4 SELECT valid Person H
5 START Trace Car WITH P, H, N
6 END IF

Table 4.11: OnStartPaperWaitForCut

Triggered by: Paper P
1 IF (any Scissors S with S.CurrentActivity = Scissors Wait for Task) AND
2 (any Person H with H.CurrentActivity = Person Wait for Task) THEN
3 SELECT valid Paper P
4 SELECT valid Person H
5 START Cut Car WITH P, H, S
6 END IF

Table 4.12: OnStartPaperWaitForFold

Triggered by: Paper P
1
2
3
4

Table 4.13: OnStartPaperWaitForTape

Triggered by: Paper P
1 IF (any Tape Pieces TP with TP.CurrentActivity = Tape Pieces Wait for Tape) AND
2 (any Person H with H.CurrentActivity = Person Wait for Task) THEN
3 SELECT valid Tape Pieces TP
4 SELECT valid Person H
5 START Tape Car WITH P, H, TP
6 END IF

28

Table 4.14: OnStartPersonWaitForTask

Triggered by: Person H
1 # Prioritise taping, then folding, then cutting, then tracing
2 IF (any Paper P with P.CurrentActivity = Paper Wait for Tape Car) AND
3 (any Tape Pieces with TP.CurrentActivity = Tape Pieces Wait for Tape) THEN
4 SELECT valid Paper P
5 SELECT valid Tape Pieces TP
6 START Tape Car WITH P, H, TP
7 ELSE IF (any Paper P with P.CurrentActivity = Paper Wait for Tape Car) AND
8 (any Tape T with T.CurrentActivity = Tape Wait for Cut) AND
9 (any Scissors S with S.CurrentActivity = Scissors Wait for Task) THEN

10 # There is a car waiting to be taped, but no tape pieces
11 SELECT valid Tape T
12 SELECT valid Scissors S
13 START Cut Tape WITH T, H, S
14 ELSE IF (any Paper P with P.CurrentActivity = Paper Wait for Fold)
15 SELECT valid Paper P
16 START Fold Car WITH P, H
17 ELSE IF (any Paper P with P.CurrentActivity = Paper Wait for Cut Net) AND
18 (any Scissors with S.CurrentActivity = Scissors Wait for Task) THEN
19 SELECT valid Paper P
20 SELECT valid Scissors S
21 START Cut Car Net WITH P, H, S
22
23
24
25
26
27 END IF

4.4 Assumptions and Simplifications

What assumptions did you make when defining your model? What simplifi-
cations did you make? These details are important when communicating
your model to others. List them in the box below. Remember, assumptions
are beliefs about the system that we take to be true, and inform part of the
model. Assumptions enable us to resolve uncertainties about the actual sys-
tem. We use assumptions complete parts of the model that we do not have
the information about. Simplifications are intentional changes to the model
that make it different from the system being modelled. Simplifications are
usually used to replace a complex part (or parts) with a simpler one, that is
either more easily: defined in the conceptual model; implemented in the
simulation; or communicated.
You have now completed the conceptual model of the cube making activity
and you could use this model as the staring point for implementing a
simulation model in JaamSim using the HCCM library. Show your work to
a lab tutor to get it signed off.

29

30

Part III

Jaamsim

5 Setting Up VSCode and Java

In this lab you will walk through the set up of running a Java program
in VSCode. You will need to be able to do this to implement HCCMs in
Jaamsim. You don’t need to get this lab signed off, but you will need to
have VSCode and the extensions installed to complete the next few labs.
If you do not already have VSCode installed on your machine, download
and install the version appropriate for your operating system from here.
If you are using your own laptop, it is best to install a recent version of the
Java JDK (unless you are confident you already have a recent version). We
recommend Amazon Corretto 25. You can download it from here, and then
install it. If you are using a lab computer we will use a version of Java that
is already installed, which is Amazon Corretto 25.
To see short videos of the steps described below please visit this site.
First we will set up the folder structure that you will use to contain the
files, not just for this lab but all the ENGSCI 355 labs. Create a new folder
called ENGSCI355, if you are using a lab computer create this folder in
the Documents folder on your University OneDrive. By keeping all of
the 355 files on your OneDrive you should be able to access them on any
University computer. If you are using your own computer, then create it
within Documents or wherever you usually keep University related work.
Inside the ENGSCI355 folder create another folder called Java_Example.
Once you have created the folders start VSCode. The first thing we will do
in VSCode is create a profile for 355. A VSCode profile allows you to save
settings and transfer them when you use VSCode on a different computer.
This is useful if you use a different lab computer, or use a lab computer
then your personal computer. We will use it mainly to save the extensions
we need to run Java programs.
To create a profile click on the Settings icon in the bottom left corner of
the screen, then select Profiles. In the window that opens click on the New
Profile button. Enter ENGSCI355 for the profile name, then scroll down
and click Create. Once the profile has been created we need to activate it by
clicking on the tick next to its name. With the profile active we need to install
the extensions that we need for Java. On the left-hand side click on the
Extensions tab. Search for the ‘Extension Pack for Java’ and install it. Once
it is installed, go back to the Profiles page by clicking on the name of the tab
or by clicking on the Settings icon again and selecting Profiles. Then click
on the three dots to the right of the ENGSCI355 profile, an select Export
from the pop-up menu. From the export options provided select “Local
file”. Then browse to the ENGSCI355 folder on your OneDrive you create
earlier and click Save. You should now have a ENGSCI355.code-profile
file saved on your OneDrive that includes the extensions needed to run
Java programs (like Jaamsim). This means that if you work on a different
computer in the future you can load this profile by clicking on the Settings
icon, selecting Profiles, clicking the arrow next to the New Profile button,
selecting Import Profile, and browsing to this ENGSCI355.code-profile
file.
Then in VSCode open the folder you created earlier by going File -> Open
Folder, then navigating to the Java_Example folder.

32

https://code.visualstudio.com/Download
https://docs.aws.amazon.com/corretto/latest/corretto-25-ug/downloads-list.html
https://auckland.au.panopto.com/Panopto/Pages/Sessions/List.aspx?folderID=e07b3856-7cf5-4024-8c93-b21f016633ea

Once you have opened the folder in VSCode, create a new file in it called
Hello.java. Once you have that file (or any .java file) open VSCode should
detect that you are editing a java file and, if there isn’t one already, create
a Java Project in the same folder. You should see that the ‘Java Projects’
section has been enabled in the bottom left of the screen.
We now want to make sure that this Java Project is using the correct Java
JDK. Hover your mouse over the ‘Java Projects’ title and then click on
the three dots that appear on the right hand side (with the tooltip ‘More
Actions’), and select ‘Configure Java Runtime’. Use the drop-down menu
that appears to select the Amazon Corretto 25 JDK. If it is not on the list,
select ‘Find a local JDK’ and browse to the location that you installed the
Amazon Corretto JDK.
Now go back to the Hello.java file and add the following code:

1 public class Hello {
2 public static void main(String[] args) {
3 System.out.println("Hello!");
4 }
5 }

To run the program either click on the ‘Run’ button just above the line that
declares the main function, or click on the run button in the top right corner
of the screen. You should see a line with ‘Hello!’ printed by itself.
You have now created and run a Java program! If you run into any issues,
there are more detailed instructions available here.

33

https://code.visualstudio.com/docs/java/java-tutorial

6 Setting Up JaamSim and HCCM

In this lab you will walk through the set up of how to run JaamSim from
source in a VSCode project and how to include the HCCM library in Jaam-
Sim. The goal is for you to be able to run an HCCM Jaamsim model and
begin to understand how the Java code, autoload and include files, and
the cfg file are related. To get this lab signed off you will need to show the
demonstration model running.

6.1 Prerequisites

These instructions were prepared using:
1. Git – 2.47.0.2;
2. GitHub Desktop – 3.4.8 (x64);
3. Java – Amazon Corretto 25;
4. VSCode – 1.95.1.

They should work with more recent versions of the software too. All of this
software is standard on Engineering lab machines. Amazon Corretto 25 is
available on the University of Auckland’s Software Centre.
To see short videos of the steps described below please visit this site.

6.2 Create the Project Folder Structure

Create a new folder on your University OneDrive called ENGSCI355, if you
have not done so already. Then create two folders within this one, called
sim, and labs. The sim folder will contain the java code for the simulation
software Jaamsim, including custom code that you write, and is the focus
of these instructions. The labs folder will contain subfolders for each lab
with the simulation files for each. Create a folder for HCCM logic functions
within the sim folder. We will use sim_custom in these instructions.

6.3 Clone HCCM into the project folder

Open GitHub Desktop and go to File→ Clone repository, then select the
URL tab and enter

https://github.com/mosu001/hccm
as the URL. Choose the Local path to be the sim folder that you just created,
and click Clone. This will create an hccm folder within the sim folder that
contains the HCCM and Jaamsim code.
Note, if you use git from the command line, e.g., Git Bash, you need to add
the recurse submodules option
git clone --recurse-submodules https://github.com/mosu001/hccm

34

https://auckland.au.panopto.com/Panopto/Pages/Sessions/List.aspx?folderID=59000722-14f5-4215-8948-b22501731784

6.4 Create files to load HCCM and customised
components

From hccm\custom copy both autoload.cfg and hccm.inc into the
sim_custom folder. Then open autoload.cfg with VSCode and edit it so
that the content matches that in Figure 6.1.

Include units.inc
Include sim.inc
Include units-imperial.inc
Include units-knots.inc
Include displayModels.inc
Include graphics.inc
Include probabilityDistributions.inc
Include basicObjects.inc
Include resourceObjects.inc
Include examples.inc
Include processFlow.inc
Include calculationObjects.inc
Include fluidObjects.inc
Include submodels.inc
Include hccm.inc
Include sim_custom.inc

Figure 6.1: Customised autoload.cfg File

Then rename hccm.inc to sim_custom.inc, open it in VSCode, and delete
all the contents so it is blank. Don’t forget to save both autoload.cfg and
sim_custom.inc.

6.5 Create a VSCode Java Project

In VSCode use File → Open Folder to open the sim folder. In the File
Explorer open some folders so that you can see a .java file and open it,
for example: hccm\custom\hccm\Constants.java. VSCode should then
recognise that you have opened a Java file and the Java Projects pane
should appear.

6.6 Configure Source Folders

Now we need to tell VSCode where the source code of the project is. To
do this we click on the three dots at the right of the ‘Java Projects’ title and
select ‘Configure Classpath’. A new menu should come up that allows you
to add and remove sources. If anything other than hccm\custom is already
there remove it by clicking on the x on the far right hand side, then ‘Apply
Settings’. Add new sources by clicking on ‘Add Source Root’. First add
sim\hccm\jaamsim\src\main\java, then click ‘Apply Settings’. Then add
both sim\hccm\jaamsim\src\main\resources and sim\sim_custom, re-
membering to apply the settings after each one.
You can check to make sure that you have the correct sources config-
ured by opening the settings.json file in the .vscode folder. Under
“java.project.sourcePaths” there should be the following four entries:

35

• hccm\\custom
• hccm\\jaamsim\\src\\main\\java
• hccm\\jaamsim\\src\\main\\resources
• sim_custom

6.7 Configure JDK

We need to make sure that VSCode is using the version of Java that we
want it to. To do this we click on the three dots at the right of the ‘Java
Projects’ title and select ‘Configure Java Runtime’. A drop-down menu for
JDK should come up. Make sure that JavaSE-17 is selected and then click
‘Apply Settings’.

6.8 Configure Libraries

JaamSim also needs the gluegen and jogl libraries to run. These are pack-
aged with JaamSim as .jar files (a compiled Java program). They can be
added by opening the project settings by clicking on the three dots at the
right of the ‘Java Projects’ title and selecting either ‘Configure Java Runtime’
or ‘Configure Classpath’. Then select the ‘Libraries’ tab on the right. Click
on ‘Add Library’, then navigate to hccm\jaamsim\jar, select all of the files,
and click ‘Select Jar File’. Then click ‘Apply Settings’.

6.9 Integrate with JaamSim

To integrate HCCM and any custom logic with JaamSim you need to
copy your autoload.cfg and sim_custom.inc files (from sim_custom) to
sim\hccm\jaamsim\src\main\resources\resources\inputs and replace the
autoload.cfg file that is currently there. You also need to copy the file
hccm.inc in hccm\custom to the same location. To check that they have
been copied correctly you can look in the ‘Java Projects’ section on the
left-hand side. Under hccm\jaamsim\src\main\resources\resources\inputs
you should see both hccm.inc and sim_custom.inc. If you don’t, try using
the menu accessed by clicking the three dots and selecting ‘Refresh’.

6.10 Run Custom JaamSim

You should now be able to run JaamSim with the HCCM objects enabled.
Start by clicking on the ‘Run and Debug’ menu on the left-hand side, then
click on ‘create a launch.json file’, and select ‘Java’ from the list of debuggers
that comes up in the middle of the screen. By doing this VSCode analyses
the source code to determine which java files you might like to run and
creates run configurations for each of them. In the file that is created you
should see an entry with the name ‘GUIFrame’, this is the class that we need
to run to start JaamSim. To make the view work correctly when JaamSim
is running you need to add another parameter called “vmArgs” with the
following entries enclosed in double quotes and separated by spaces on a
single line:

• --add-exports java.base/java.lang=ALL-UNNAMED
• --add-exports java.desktop/sun.awt=ALL-UNNAMED
• --add-exports java.desktop/sun.java2d=ALL-UNNAMED

36

The final entry in the .launch file should look like this:

1 "type": "java",
2 "name": "GUIFrame",
3 "request": "launch",
4 "mainClass": "com.jaamsim.ui.GUIFrame",
5 "projectName": "sim_d11998cc",
6 "vmArgs": "--add-exports java.base/java.lang=ALL-UNNAMED

--add-exports java.desktop/sun.awt=ALL-UNNAMED
--add-exports java.desktop/sun.java2d=ALL-UNNAMED"

↩→

↩→

Then, in the top left-hand corner next to the green play button click on
the drop-down menu and select ‘GUIFrame’. Then click the green play
button to run JaamSim. The launch screen should appear but you might
also have to click on the JaamSim icon in the Taskbar at the bottom of the
screen to open JaamSim. You should see the ‘HCCM’ palette at the bottom
of the ‘Model Builder’ window, and be able to drag and drop objects into
the View.

6.11 Running an HCCM Model

Now that we have JaamSim running with the HCCM objects we can try
running an existing model. Download the single server queue model’s folder,
ssq.zip, from Canvas under Lab 4 in the Java, Jaamsim, and HCCM module.
Then, move it into the labs folder and extract ssq.zip into that folder. You
might want to remove the ssq at the end of the extraction destination to
prevent nested ssq folders being created.
Now we need to create package in our Java Project to hold the custom
logic associated with this model. In VSCode right-click on the sim_custom
folder and select New Java Package. Enter ssq for the name of the package
and click Finish. This will have created a new folder in the sim_custom
folder called ssq.
Now go back to the ssq folder you extracted the zip file to and copy the
FIFOQControlUnit.java file to the newly created package folder under
sim\sim_custom\ssq. This java file defines a new Jaamsim object, in this
case the control unit for the SSQ model.
Finally we need to make this new object available in Jaamsim. To
do this we need to edit the sim_custom.inc file that we put in
sim\hccm\jaamsim\src\main\resources\resources\inputs. Open the
sim_custom.inc file and also open the ssq.inc file in the ssq folder. Copy
the contents of ssq.inc into sim_custom.inc.

Run JaamSim with HCCM from the Run and Debug menu again (make sure
that GUIFrame is selected in the drop-down). You should now see a Single
Server Queue palette in the Model Builder window. It has the FIFO trigger
for the Single Server Queue model (you will learn more about triggers in
later labs).
Next in Jaamsim in the top left corner select file, then open, and open
ssq.cfg from the ssq folder. You can run the model by clicking on the blue
play button in the top left and see how the customers and servers join
together for service in the queue.
Show this model running to a lab tutor to get your lab signed off.

37

https://canvas.auckland.ac.nz/files/14739485/download?download_frd=1

7 Radiology Clinic

In this lab you will be introduced to the basics of creating a simulation
model using the discrete event simulation software Jaamsim and the HCCM
module. To do this we will use the CT service of a radiology clinic as an
example. At the clinic patients: arrive according to a known distribution
24/7; check in at reception, which takes a uniformly distributed amount
of time; and then have a scan, the duration of which also follows a known
distribution; and finally leave.
We want to use the simulation to determine the average time that patients
spend in the clinic, between arriving and leaving. We want to compare this
time to the time that patients would spend in the system if interarrival times
and scan durations were always equal to the average of the distributions
for all patients. Typically we would first formulate the simulation model
by defining the objectives, benefits, conceptual model, and experiments.
For the sake of brevity we will only cover the experiments. As the aim of
the lab is to learn the basics of Jaamsim, the conceptual model is not given
here, instead it is available in Chapter 13.
To have your lab signed off you need to show that you have built the
simulation model, can run it, and the output matches the provided results.

7.1 Experiments

We will perform just one experiment, using distributions for the arrival,
check in, and scan processes. We will use a Poisson distribution with
_ = 8/hour for the arrival process, a uniform distribution between 2 and 5
minutes for the check in durations, and a log-normal distribution where
the underlying normal variable has a mean of -1.34 and standard deviation
0.29 for the scan durations. For the experiment we will run 50 replications
that each last for 1 week.

7.2 Jaamsim Model

7.2.1 Creating Model Objects

Run Jaamsim by opening your VSCode project and the clicking the run
button and select GUIFrame. The HCCM palette on the left hand side
allows us to create Jaamsim objects that correspond to the components
of our HCCM conceptual models. Based on the problem description and
conceptual model we need three types of entities: patients, receptionists,
and CT Machines. To create each of these expand the HCCM palette in
the Model Builder window, select ActiveEntity, and dragging it into the
View Window, see Figure 7.1. Then in the Object Selector window select
ActiveEntity1, press F2, and rename it PatientEntity. Alternatively, you
can change the name by editing the value of the ‘Name’ Keyword, which is
the top entry in the ‘Key Inputs’ tab.

Figure 7.1: Screenshot of an ActiveEntity

38

Table 7.1: Arrival Distribution Inputs

Object Keyword Value
ArrivalDistribution UnitType TimeUnit

RandomSeed 1
Mean 0.125 h

Repeat this process two more times and create ActiveEntities called Recep-
tionistEntity and CTMachineEntity.
An ActiveEntity object by itself does not create any entities in the simulation,
it just acts as a prototype for entities. To create entities an ArriveEvent
object is used, which simulates patients/receptionists/CTMachines arriving
at the clinic. The ArriveEvent object creates a series of entities that are
passed to the next object in a process. The PrototypeEntity keyword iden-
tifies the entity to be copied. The rate at which entities are generated is
determined by the InterArrivalTime and FirstArrivalTime keywords. Create
three ArriveEvents called PatientArrival, ReceptionistArrival, and CTMa-
chineArrival, and set the PrototypeEntity to be the related entity (patient,
receptionist, CTMachine).
We also need to create objects that represent the entities leaving, called
LeaveEvent, we will only create one for the patients, as we are assuming
that the receptionist and CT machines are available 24/7 so they do not
need to leave. Drag and drop a leave event into the simulation, rename it
PatientLeave, and set the Participant to be the patient entity (under the
HCCM tab).
The patients waiting for check in and scanning, and both the receptionist
and CT machines waiting for tasks can be represented by WaitActivities,
so create four WaitActivities and rename them WaitForCheckIn, Wait-
ForScan, WaitForTaskReceptionist, and WaitForTaskCTMachine respec-
tively, and once again set the Participant to the respective entity.
We can then represent the patient doing check in with the receptionist, and
the patient being scanned by a CT machine as process activities. Create
two process activities and rename them CheckIn, and Scan.
We also need to create objects to represent the probability distributions
that the interarrival, check in, and scan times come from. Probability
distributions can be represented in Jaamsim with distribution objects. If we
examine the PatientArrival object we see two keywords FirstArrivalTime and
InterArrivalTime which determine the rate that the entities are created. For
a Poisson process with an average of 8 arrivals per hour the interarrival times
can be modelled by an exponential distribution with mean 0.125 hours.
We therefore go into the Probability Distributions palette in the Model
Builder window and create an ExponentialDistribution object and name
it ArrivalDistribution. First we set the UnitType keyword to be TimeUnit,
then we set the mean of the distribution to 0.125 h. The UnitType tells
Jaamsim what type of value we want the distribution object to create, in
our case this is the time between arrivals in hours, which is a unit of time.
Also make sure that the RandomSeed is 1, this determines the seed for the
random number generator. Table 7.1 shows the keywords and values for
the ArrivalDistribution object.
We need to repeat these steps for the check in and scan processes, which
follow uniform and log-normal distributions respectively, so create a Unifor-
mDistribution object called CheckInDistribution and a LogNormalDistri-
bution object called ScanDistribution. Then update the keywords of the
distribution objects as follows in Table 7.2:

39

Table 7.2: Check In and Scan Distributions

Object Keyword Value
CheckInDistribtuion UnitType TimeUnit

RandomSeed 2
MinValue 2 min
MaxValue 5 min

ScanDistribution UnitType TimeUnit
RandomSeed 3
Scale 1 h
NormalMean -1.34
NormalSD 0.29

The final object we need at this stage is a Statistics object, to capture some
output about the patients. This is found under the ProcessFlow palette,
create a Statistics object and call it TimeInSystem.
At this point you should have the objects shown in Table 7.3 in your simula-
tion.
Once you have created all of these objects lay them out similarly to as shown
in Figure 7.2.

Figure 7.2: Screenshot of Simulation Model Layout

Create a new folder in the labs folder calledRC1 and save your simulation as
radiology_lab.cfg or something similar inside the new folder. Also take this
opportunity to change the graphics of the PatientEntity, ReceptionistEntity
and CTMachineEntity. Download the patient.png, receptionist.png, and
ctscanner.png (icons made by Freepik from www.flaticon.com) files from
Canvas in the Lab 5: Radiology Clinic Assignment and save them in the
same folder as your simulation .cfg file. Then in Jaamsim right click on
PatientEntity and select Change Graphics. Click on Import and navigate to
your downloaded patient.png, import it (it may be called patient-model)
and accept the change. Repeat the process for the receptionists, and CT
scanners.

40

Table 7.3: Model Objects

Object Type Name
ActiveEntity PatientEntity
ActiveEntity ReceptionistEntity
ActiveEntity CTMachineEntity

ArriveEvent PatientArrival
ArriveEvent ReceptionistArrival
ArriveEvent CTMachineArrival

LeaveEvent PatientLeave

WaitActivity WaitForCheckIn
WaitActivity WaitForScan
WaitActivity WaitForTaskReceptionist
WaitActivity WaitForTaskCTMachine

ProcessActivity CheckIn
ProcessActivity Scan

ExponentialDistribution ArrivalDistribution
UniformDistribution CheckInDistribution
LogNormalDistribution ScanDistribution

Statistics TimeInSystem

7.2.2 Configuring Objects

Now that we have created the objects we need, we need to set the options
for the each of them, starting with the ArriveEvents. The PatientArrival
should have both the first arrival time and inter arrival times set by the
ArrivalDistribution object, use the PatientEntity as a prototype, and the
NextAEJObject should be WaitForCheckIn. NextAEJObject stands for next
activity/event/Jaamsim object and refers to the fact that the next place
an entity goes could be a standard Jaamsim object or a custom HCCM
activity or event. For the arrive events we set NextAEJObject to the object
that represents the activity that is transitioned to at the end of the event
state changes in the conceptual model. For the ReceptionistArrival and
CTMachineArrival we need to: set the prototype entity; both MaxNumber
and InitialNumber (1 for receptionist, 3 for CT Machine); and set the
NextAEJObject to the respective wait activity.
Next we will set the options for the Process Activities (and Statistics) so
that the routing/flow for the entities is correct. The Check In activity has
both the Patient and Receptionist as participants so we set the Participant
list to PatientEntity, ReceptionistEntity. The duration is determined by the
check in distribution, so we just set the duration to be CheckInDistribu-
tion object. After Check In the Patient starts waiting for a scan and the
receptionist goes back to waiting for a task, so we set the NextAEJList
to WaitForScan, WaitForTaskReceptionist. The Scan activity has both the
Patient and CTMachine as participants and the duration is determined by
the ScanDistribution object. After Scan the Patient should just leave, but we
want to record some statistics first so we send it to TimeInSystem, and the
CTMachine goes back to WaitForTaskCTMachine. For Process Activities the
NextAEJList is similar to the NextAEJObject from the Arrive Events (which
is similar to NextComponent), the difference is that a list of next objects

41

Table 7.4: Arrival Event Parameters

Object Tab Keyword Value
PatientArrival Key Inputs PrototypeEntity PatientEntity
PatientArrival Key Inputs FirstArrivalTime ArrivalDistribution
PatientArrival Key Inputs InterArrivalTime ArrivalDistribution
PatientArrival HCCM NextAEJObject WaitForCheckIn

ReceptionistArrival Key Inputs PrototypeEntity ReceptionistEntity
ReceptionistArrival Key Inputs MaxNumber 1
ReceptionistArrival Key Inputs InitialNumber 1
ReceptionistArrival HCCM NextAEJObject WaitForTaskReceptionist

CTMachineArrival Key Inputs PrototypeEntity CTMachineEntity
CTMachineArrival Key Inputs MaxNumber 3
CTMachineArrival Key Inputs InitialNumber 3
CTMachineArrival HCCM NextAEJObject WaitForTaskCTMachine

Table 7.5: Process Activity Parameters

Object Tab Keyword Value
CheckIn Key Inputs Duration CheckInDistribution
CheckIn HCCM ParticipantList PatientEntity ReceptionistEntity
CheckIn HCCM NextAEJList WaitForScan WaitForTaskReceptionist

Scan Key Inputs Duration ScanDistribution
Scan HCCM ParticipantList PatientEntity CTMachineEntity
Scan HCCM NextAEJList TimeInSystem WaitForTaskCTMachine

is given, one for each of the participants in the activity. The participants
are sent to the corresponding element of the list so it is important that the
next activities are in the same order as the participants.
Note that when you click on the checkboxes in the popup menu for both Par-
ticipantList and NextAEJList the items are added in alphabetical order, not
the order you click them in. This is particularly important for the Scan ac-
tivity as the CTMachineEntity comes before the PatientEntity alphabetically,
but for the next activities TimeInSystem is before WaitForTaskCTMachine
alphabetically so the two lists will not be in the same order.
The last object we need to configure before the simulation will run (it will
run but it will not quite work correctly) is the TimeInSystem object. This is a
Statistics object which collects a value from each Entity that passes through
it and outputs the mean of the sampled values. We then need to finish the
routing so that patients leave after going through the TimeInSystem, and
tell the Statistics object which value to record as shown in Table 8.7, note
that this refers to the Statistics object itself, obj refers to the entity that the
Statistics object is currently processing, and TotalTime is an output on the
entity that stores the total time that the entity has been in the simulation
for.
Save your simulation again. If you run your simulation now you should see
one receptionist arrive and wait, three CT machines arrive and wait, and
patients arrive, and wait for check in. However nothing else will happen
and all of the entities will simply be waiting, this is because we have not
specified any logic to be triggered when the entities start waiting.

42

Table 7.6: Collecting Statistics

Object Keyword Value
TimeInSystem NextComponent PatientLeave

UnitType TimeUnit
SampleValue this.obj.TotalTime

7.3 Model Logic – Java

In your VSCode project you should have a folder called sim_custom under
the Explorer tab on the left-hand side in VSCode. First right-click on this
folder and select New Java Package. Enter labs for the name of the package
and press Enter.

Figure 7.3: First Step in Creating a New Package

A new folder called labs should have been created within the sim_custom
folder. Right click on the newly created labs folder and select New Java
File→ Class. Name the Class RadiologyControlUnit and press Enter.

43

Figure 7.4: Second Step in Creating a New Package

Figure 7.5: First Step in Creating a New Class

Figure 7.6: Second Step in Creating a New Class

44

Once you have created the new class, an almost-empty file called Radiology-
ControlUnit.java should be created. You need to add extends ControlUnit
to the line that declares the class, and also import the ControlUnit class
with import hccm.controlunits.ControlUnit;. At this stage the file
should look like this:

1 package labs;
2

3 import hccm.controlunits.ControlUnit;
4

5 public class RadiologyControlUnit extends ControlUnit{
6

7 }

The final step required to make this new object available in the simulation
is to add to the contents of the sim_custom.inc file that we put in sim→
hccm → jaamsim → src → main → resources → resources → inputs.
There should already be some code there from the previous lab, so you only
need to add lines 3, 7, and 10. If you want to copy and paste this make
sure the quotes are copied correctly and the returns (arrows) are removed.
Alternatively there is a new sim_custom.inc file here on Canvas in the Lab
5: Radiology Clinic Assignment that you can use directly.

1 Define ObjectType {
2 FIFOQControlUnit
3 RadiologyControlUnit
4 }
5

6 ControllerIconModel ImageFile {
'<res>/images/Controller-256.png' } Transparent { TRUE
}

↩→

↩→

7 AssembleIconModel ImageFile {
'<res>/images/Assemble-256.png' } Transparent { TRUE }↩→

8

9 FIFOQControlUnit JavaClass { ssq.FIFOQControlUnit } Palette
{ 'Single Server Queue' } DefaultDisplayModel {
ControllerIconModel } IconFile {
'<res>/images/Controller-24.png' } DefaultSize { 0.5 0.5
0.5 m }

↩→

↩→

↩→

↩→

10 RadiologyControlUnit JavaClass { labs.RadiologyControlUnit }
Palette { 'Custom Logic' } DefaultDisplayModel {
AssembleIconModel } IconFile {
'<res>/images/Assemble-24.png' } DefaultSize { 0.5 0.5
0.5 m }

↩→

↩→

↩→

↩→

Once you have updated the sim_custom.inc file, restart Jaamsim. If ev-
erything is working correctly the RadiologyControlUnit object should now
be available under the Custom Logic palette as shown in the screenshot
below:
Once you have the new RadiologyControlUnit object available open your
simulation and create one.
We now need to add the Java code to the new RadiologyControlUnit class to
run the control policies. First add the following imports under the package
declaration. Note These code snippets for this lab are provided in a separate
file for you here on Canvas in the Lab 5: Radiology Clinic Assignment.

45

https://canvas.auckland.ac.nz/courses/121185/modules/items/2533067
https://canvas.auckland.ac.nz/courses/121185/modules/items/2533080

Figure 7.7: Screenshot of Control Unit Object

1 package labs;
2 import java.util.ArrayList;
3 import java.util.Arrays;
4 import java.util.Collections;
5 import java.util.List;
6

7 import hccm.activities.ProcessActivity;
8 import hccm.controlunits.ControlUnit;
9 import hccm.entities.ActiveEntity;

Then, within the definition of the class we need to create four methods
that represent the four control policies in the model. Each control policy
is a public method of the class that does not return any value (is void)
and takes both a list of Active Entities, and the simulation time as inputs.
We will use the same names for the methods as the control policies in the
conceptual model: OnStartWaitForCheckIn, OnStartWaitForScan, On-
StartWaitForTaskReceptionist, and OnStartWaitForTaskCTMachine. In
the first of these, OnStartWaitForCheckIn we first need to get a list of the
Receptionist Entities that are currently in the ’ ’WaitForTaskReceptionist”
activity, and we also create a comparator object that is used to sort a list of
entities by when they started their current activity.
Once we have the list of idle receptionists we check whether it is not empty,
and if it isn’t proceed to sort it, select the first one, and transition the patient
and receptionist to the check in activity.
Similar methods are defined for the other control policies, with small
changes based on the types of entities that are being checked, and the
activity that is started. There are gaps that need to be filled in on lines 3,
24, and 42. In the first gap you need to create an array that contains all of
the CT Machines that are currently idle. In the second, you need to select
which of the patients that are currently waiting should do check in with
the receptionist. In the third, you need to start the next activity with the
patient and CT Machine. All of these have similar lines in the first method
that you can use as a guide.
The final step needed to get this logic into the simulation is to define Trig-
gers that initiate these methods and where/when they should be called. To

46

1 public void OnStartWaitForCheckIn(List<ActiveEntity> ents, double simTime) {
2

3 ArrayList<ActiveEntity> idleReceps = this.getEntitiesInActivity("ReceptionistEntity",
"WaitForTaskReceptionist", simTime);↩→

4 ActivityStartCompare actSartComp = this.new ActivityStartCompare();
5

6 if (idleReceps.size() > 0) {
7 Collections.sort(idleReceps, actSartComp);
8

9 ActiveEntity patient = ents.get(0);
10 ActiveEntity receptionist = idleReceps.get(0);
11

12 transitionTo("CheckIn", patient, receptionist);
13 }
14 }

Table 7.7: Trigger Parameters

Object Tab Keyword Value
StartWaitCheckIn HCCM ControlUnit RadiologyControlUnit1
StartWaitCheckIn HCCM ControlPolicy OnStartWaitForCheckIn

StartWaitScan HCCM ControlUnit RadiologyControlUnit1
StartWaitScan HCCM ControlPolicy OnStartWaitForScan

StartWaitTaskReceptionist HCCM ControlUnit RadiologyControlUnit1
StartWaitTaskReceptionist HCCM ControlPolicy OnStartWaitForTaskReceptionist

StartWaitTaskCTMachine HCCM ControlUnit RadiologyControlUnit1
StartWaitTaskCTMachine HCCM ControlPolicy OnStartWaitForTaskCTMachine

do this create four Trigger objects, called StartWaitCheckIn, StartWait-
Scan, StartWaitTaskReceptionist, and StartWaitTaskCTMachine from
the HCCM palette and set the ControlUnit and ControlPolicy for each
one. The value of the ControlPolicy keyword needs to exactly match the
name of the method you have defined in the java code.
Then update the parameters in the Wait Activities that these control policies
should be triggered in:
Now if you save and run your simulation you should be able to see patients
arriving, checking in, being scanned, and leaving. If you get an error saying
that a method cannot be found on the control unit, first make sure that all
of the ControlPolicy inputs exactly match the names of the methods in the
control unit java file. Then try closing Jaamsim, cleaning your project, and
restarting Jaamsim.

7.4 Model Output

To perform different experiments and multiple replications we make use
of Jaamsim’s MultipleRuns feature which can be found in the Simulation
object at the top of the Object Selector window. Here we can use the
NumberOfReplications to control how many replications are performed.
We want to do 50 replications so we set NumberOfReplications to 50.
We want each replication to run for one week, so we set RunDuration

47

1 public void OnStartWaitForScan(List<ActiveEntity> ents, double simTime) {
2

3 // A //
4 ActivityStartCompare actSartComp = this.new ActivityStartCompare();
5

6 if (idleCTs.size() > 0) {
7 Collections.sort(idleCTs, actSartComp);
8

9 ActiveEntity patient = ents.get(0);
10 ActiveEntity ct = idleCTs.get(0);
11

12 transitionTo("Scan", patient, ct);
13 }
14 }
15

16 public void OnStartWaitForTaskReceptionist(List<ActiveEntity> ents, double simTime) {
17

18 ArrayList<ActiveEntity> waitPats = this.getEntitiesInActivity("PatientEntity",
"WaitForCheckIn", simTime);↩→

19 ActivityStartCompare actSartComp = this.new ActivityStartCompare();
20

21 if (waitPats.size() > 0) {
22 Collections.sort(waitPats, actSartComp);
23

24 // B //
25 ActiveEntity receptionist = ents.get(0);
26

27 transitionTo("CheckIn", patient, receptionist);
28 }
29 }
30

31 public void OnStartWaitForTaskCTMachine(List<ActiveEntity> ents, double simTime) {
32

33 ArrayList<ActiveEntity> waitPats = this.getEntitiesInActivity("PatientEntity", "WaitForScan",
simTime);↩→

34 ActivityStartCompare actSartComp = this.new ActivityStartCompare();
35

36 if (waitPats.size() > 0) {
37 Collections.sort(waitPats, actSartComp);
38

39 ActiveEntity patient = waitPats.get(0);
40 ActiveEntity ct = ents.get(0);
41

42 // C //
43 }
44 }

48

Table 7.8: Wait Activity Parameters

Object Tab Keyword Value
WaitForCheckIn HCCM StartTriggerList StartWaitCheckIn
WaitForCheckIn HCCM StartTriggerChoice 1

WaitForScan HCCM StartTriggerList StartWaitScan
WaitForScan HCCM StartTriggerChoice 1

WaitForTaskReceptionist HCCM StartTriggerList StartWaitTaskReceptionist
WaitForTaskReceptionist HCCM StartTriggerChoice 1

WaitForTaskCTMachine HCCM StartTriggerList StartWaitTaskCTMachine
WaitForTaskCTMachine HCCM StartTriggerChoice 1

Table 7.9: Simulation Parameters

Object Tab Keyword Value
Simulation Key Inputs RunDuration 7 d
Simulation Key Inputs RunOutputList {‘[TimeInSystem].SampleAverage / 1[h]’}
Simulation Multiple Runs NumberOfReplications 50
Simulation Multiple Runs PrintConfidenceIntervals FALSE

to 7d. To record outputs we can make use of the Simulation object’s
RunOutputList, which saves the final value of outputs at the end of each
run. The scenario number, and the replication number are saved by default
(by default PrintRunLabels and PrintReplications are TRUE), but we will
calculate confidence intervals ourselves so we set PrintConfidenceIntervals
to FALSE. Because ActiveEntities are removed from the simulation when
they enter a LeaveEvent, we cannot get the total time that each patient
spends in the clinic at the end of the run. This is why we created a Statistics
object called TimeInSystem that records how long they have been in the
system before they are destroyed. We can use the SampleAverage output
of the TimeInSystem object in the Simulation’s RunOutputList to output
the mean time in system for each replication. Note The SampleAverage
is divided by 1[h] to give a raw number in hours for later processing in
Python. Otherwise JaamSim writes an h to the data file.
Now if you save and run your simulation a file should be created called
‘yourSimulationName.dat’. To speed up running the simulation you can turn
off the option ‘Real time’, in the top left corner next to the play button.
With the model complete and the results recorded we can use Python to
analyse them. First download the Python analysis file provided (on Canvas
in the Lab 5: Radiology Clinic Assignment), then change name of the .dat
file to match yours and make sure it is in the same directory as the Python
file, then run the Python file. The following output should be printed:

Scenario Replication TimeInSystem
0 1 1.0 0.443924
1 1 2.0 0.521371
2 1 3.0 0.441290
3 1 4.0 0.418234
4 1 5.0 0.519311
Mean 0.449299
CI Half Width 0.007243
Name: TimeInSystem, dtype: float64

49

https://canvas.auckland.ac.nz/courses/121185/modules/items/2533083

7.5 Task

Construct a 95% confidence interval for the average utilisation of the three
CT machines in each experiment. You will need to add an entry to the
RunOutputList. You should get the following output:

Mean 0.730582
CI Half Width 0.006098
Name: Utilisation, dtype: float64

Hint: there are many ways to do this. Have a look at the outputs provided
on the wait activity WaitForTaskCTMachine, can you calculate the total
time that the three CTMachines have spent waiting using these outputs?
Once your simulation is working and you are getting the correct results,
you can get your lab signed off.

50

8 Extended Radiology Clinic

In this lab we will extend the simulation developed in the previous lab to
include a priority value for patients, use a priority order for scanning, and
make the scanners require half an hour of maintenance every 8 hours. The
maintenance should only occur when the machine is free, if it is busy when
the 8 hours are up the maintenance should take place the next time it is
free. We assume that there are 5 levels of priority (1, 2, 3, 4, 5) and more
important patients (lower value of priority e.g. 1 is more important than 2)
are always seen before any patients of lower priority. In addition, priority 1
and 2 patients are urgent so they do not need to check in, they go directly
to queueing for a scan. We want to use the simulation to determine the
90th percentile of time that patients spend in the clinic, between arriving
and leaving. In addition we want to compare the time that the different
priority levels spend in the clinic.
Once again, since the aim of the lab is to learn Jaamsim, the conceptual
model is not given here, instead it is available separately in Chapter 14. To
have your lab signed off you need to show that you have built the simulation
model, can run it, and the output matches the provided results.

8.1 Experiments

In this lab we will perform one experiment with 50 replications each 1 week
long. We will use the same distributions for the interarrival time, check in
time, and scan duration for appointment patients as in the previous lab.
The proportion of each type of patient in each priority group is given in
Table 8.1:

Table 8.1: Patient Priority Proportions

Priority Proportion
1 0.05
2 0.2
3 0.15
4 0.4
5 0.2

8.2 Jaamsim Model

To model the priorities, priority order, and maintenance we need to add
some components to the model from the previous lab, so create a new
folder called RC2 and copy your .cfg file (and the .png files so that the
graphics work) from the previous lab folder into this folder and rename it to
radiology_lab_extended.cfg. First we need to add a priority attribute to
the Patient entity. We can do this under theOptions tab on the PatientEntity
using the AttributeDefinitionList. Table Table 8.2 shows how to create the
priority attribute and make the default value 0.

51

Table 8.2: Priority Attribute

Object Keyword Value
PatientEntity AttributeDefinitionList { priority 0 }

Next we need a distribution to model the probabilities of the priorities. We
use a DiscreteDistribution object as this allows us to define a list of values
and the probability of each value occuring. Create a DiscreteDistribution
object called PriorityDistribution with the values shown in Table 8.3.

Table 8.3: Priority Distribution

Object Keyword Value
PriorityDistribution UnitType DimensionlessUnit

RandomSeed 4
ValueList 1 2 3 4 5
ProbabilityList 0.05 0.2 0.15 0.4 0.2

So far we have created the priority attribute and distribution, but we need
to assign values from the distribution to the patient entities. With the HCCM
objects we can assign attributes in the same object that create the arrival.

Table 8.4: Assign Priority

Object Keyword Value
PatientArrival AssignmentList { ‘this.CurrentParticipants(1).priority

= [PriorityDistribution].Value’ }

Now that we have the priority attribute we can use it change the path of
the patients. We can use a Branch object (under Process Flow palette) to
send the patients to different places based on the priorty attribute: those
with priority 1 and 2 should go straight to the scan queue, while those with
priorities 3, 4, and 5 go to wait for check in.

Table 8.5: Priority Branch

Object Keyword Value
PriorityBranch NextComponentList WaitForScan WaitForCheckIn

Choice ‘this.obj.priority ≤ 2 ? 1 : 2’

We also need to update the routing from the Arrival object so that the
patients go from the Arrive to the Branch.

Table 8.6: Update Routing

Object Keyword Value
PatientArrival NextAEJObject PriorityBranch

Nowwe need to add the newMaintenance activity, and RequireMaintenance
event. We need an additional event as well as the activity because we do not
want to interrupt a scan with maintenance, if the machine is currently in

52

use when the 8 hour time is reached. This means we cannot simply schedule
another maintenance activity 8 hours after the last one was scheduled, as the
machine might be in use at this time. Instead, we schedule an event (called
a logic event in Jaamsim) in 8 hours time, the event then triggers some logic
which checks to see if the machine is free and can start maintenance, and
if not changes an attribute so that it will start maintenance the next time it
is free. We therefore also need to add an attribute on the CTMachineEntity
called NeedMaintenance, which defaults to 0 and we will set to 1 when it
has been 8 hours since the last maintenance.
For the maintenance activity create a process activity with a duration of
30 minutes with the CTMachineEntity as the only participant and the next
activity is WaitForTaskCTMachine. Also use the start assignment list to set
the value of the NeedMaintenance attribute to 0.
Then create a logic event called RequireMaintenance and for now just use
the assignment list to set the NeedMaintenance attribute to 1. Also set the
participant.
Now we will add the new logic before connecting it with new triggers.
Follow the same instructions as in the previous lab to create a new class
called RadiologyExtendedControlUnit in the labs package, and copy the
java code from the RadiologyControlUnit to the new RadiologyExtended-
ControlUnit. Add the relevant lines to the sim_custom.inc file so that it
is available in the HCCM palette. Then replace the RadiologyControlUnit
with a RadiologyExtendedControlUnit, and replace the references to the
RadiologyControlUnit with RadiologyExtendedControlUnit in the trigger
objects: StartWaitCheckIn, StartWaitScan, StartWaitTaskReceptionist, and
StartWaitTaskCTMachine.
In the new class we need to first update the OnStartWaitForTaskCTMachine,
to include the logic for having maintenance and prioritising patients, and
add two new ones for the logic triggered when a CTMachine arrives, and
when the RequireMaintenance event occurs. Note that we don’t need to
update the OnStartWaitForScan logic as this will only start a scan if the
patient is the only one waiting, so the priority does not matter.
First update the OnStartWaitTaskCTMachine code as follows, note that on
line 4 a comparator is created to compare patients by their priority attribute.
This is then used on line 14 to sort the patients by priority. Also line 7 used
the getNumAttribute function to access the value of the NeedMaintenance
attribute of the CT Machine. You will need to fill in the parts labelled A, B,
and C. In A the CT Machine should transition to the maintenance activity
as it needs maintenance and has just become free. In B we want to save
the priority of the highest priority patient that is waiting. In C we want to
get the priority of the current patient in the loop, to see if it is the same as
the highest priority waiting.

53

1 public void OnStartWaitForTaskCTMachine(List<ActiveEntity> ents, double simTime) {
2

3 ArrayList<ActiveEntity> waitPats = this.getEntitiesInActivity("PatientEntity", "WaitForScan",
simTime);↩→

4 AttributeCompare priorityComp = new AttributeCompare("priority");
5 ActivityStartCompare actStartComp = this.new ActivityStartCompare();
6 ActiveEntity ct = ents.get(0);
7 int reqMaintenance = (int) getNumAttribute(ct, "NeedMaintenance", simTime, -1);
8

9 if (reqMaintenance == 1) {
10 // A //
11 }
12

13 else if (waitPats.size() > 0) {
14 Collections.sort(waitPats, priorityComp);
15

16 int highestPriority = // B //
17

18 ArrayList<ActiveEntity> priorityPatients = new ArrayList<ActiveEntity>();
19 for (ActiveEntity wP : waitPats) {
20 int patPri = // C //
21 if (patPri == highestPriority) {
22 priorityPatients.add(wP);
23 }
24 }
25

26 Collections.sort(priorityPatients, actStartComp);
27 ActiveEntity patient = priorityPatients.get(0);
28

29 transitionTo("Scan", patient, ct);
30 }
31 }

54

Then create two new methods called OnCTArrival and OnRequireMainte-
nance:

1 public void OnCTArrival(List<ActiveEntity> ents, double simTime) {
2

3 double maintenanceTimeGap = 8 * 60 * 60;
4 LogicEvent le = (LogicEvent) getSubmodelEntity("RequireMaintenance");
5

6 le.scheduleEvent(ents, maintenanceTimeGap);
7 }
8

9 public void OnRequireMaintenance(List<ActiveEntity> ents, double simTime) {
10

11 double maintenanceTimeGap = 8 * 60 * 60;
12 LogicEvent le = (LogicEvent) getSubmodelEntity("RequireMaintenance");
13

14 le.scheduleEvent(ents, simTime + maintenanceTimeGap);
15

16 ActiveEntity ct = ents.get(0);
17 if (ct.getCurrentActivity(simTime).equals("WaitForTaskCTMachine")) {
18 transitionTo("Maintenance", ct);
19 }
20 }

To get the new logic used in the simulation we need to add two new
triggers: StartCTArrival, and StartRequireMaintenance. Set the control
unit for both the triggers to be the RadiologyExtendedControlUnit, and
make the control policies the respective methods in the java code. Then
update the TriggerList and TriggerChoice on both the CTMachineArrival
and RequireMaintenance to refer to these triggers.
In the previous lab we looked at the mean time that patients spend in the
clinic, and we were able to output this by first using a Statistics object to
calculate it and then setting it in the Simulation object’s RunOutputList. In
this instance we are interested in the 90th percentile of time that patients
spend in the clinic. Unfortunately the Statistics object does not provide the
90th percentile as an output. Therefore we need to capture each of the
individual times that each patient spends in the clinic and calculate the
90th percentile ourselves. We can do this using an EntityLogger object from
the Process Flow palette; create one and place it between the TimeInSystem
object and the PatientExit, and name it PatientLogger. We then need to
update the routing so that patients go through the PatientLogger object
before leaving, and tell the PatientLogger object which values to record as
shown in Table 8.7, note that TotalTime is an output on the entity which
stores the total time that the entity has been in the simulation for:

Table 8.7: Collecting Statistics

Object Keyword Value
TimeInSystem NextComponent PatientLogger
PatientLogger DataSource { [Simulation].ReplicationNumber }

{ ‘this.obj.TotalTime / 1[h]’ }
NextComponent PatientLeave

Now if you save and run your simulation you should be able to see the CT
Machines performing maintenance every 8 hours.

55

The simulation object should be configured correctly from the previous lab
so we don’t need to update it. Now if you save and run your simulation a
file should be created called radiology_lab_extended.dat.
With the model complete and the results recorded we can use Python to
analyse them. First download the Python analysis file provided on Canvas
under the Lab 6: Extended Radiology Clinic Assignment. Then, change
the name of the .log file to match yours, and make sure it is in the same
directory as the Python file, then run the Python file. The following table
should be printed:

TimeInSystem
Mean 0.893513
CI_Half_Width 0.028886

8.3 Task

By also saving the priority of the patients in the patient logger, construct
95% confidence intervals for the 90th percentile of the time spent in the
clinic for each priority group. You should get the following output:

Mean CI_Half_Width
Priority
1.0 0.481123 0.011888
2.0 0.501677 0.006659
3.0 0.649709 0.013620
4.0 0.886900 0.023870
5.0 1.755913 0.128359

Once your simulation is working and you are getting the correct results,
you can get your lab signed off.

56

https://canvas.auckland.ac.nz/courses/121185/modules/items/2533099

9 Using Traces and Scenarios

In this lab we will modify the simulation developed in the previous lab to
run off of a pre-generated data trace that contains information about each
patient. We will also explore how Jaamsim’s built-in scenario indices can
be used to run experiments where the values of the simulation’s inputs are
changed and use an EventLogger to log all events that an entity partici-
pates in. Finally we will package the simulation (Jaamsim and the custom
Java code) as a .jar file, so that the simulation can be run easily from the
command line on all major operating systems.
We are not considering any changes to the system, so the conceptual model
is the same as for the previous lab. To have your lab signed off you need to
show that you have added the data from the file to the model, exported the
model as a .far file, and can run the .jar file from the command line.

9.1 Jaamsim Model

To run the simulation from a data trace we need to make some changes to
the Jaamsim model. Once again create a new folder called RC3 and copy
your .cfg file (and the .png files so that the graphics work) from the previous
lab folder into this folder and rename it to radiology_lab_trace.cfg. First,
download the RC_50_week_data.txt file from Canvas under the Lab 7:
Using Traces and Scenarios Assignment. This file contains 50 weeks of data
of patients at the radiology clinic including: the time the patient arrived,
the priority of the patient, the time the patient took to check in, and the
time the patient took to have their scan.
Before we load the data in we will first change the starting date of the
simulation, which defaults to 1970, to instead be 2024, so that the data
read from the file is interpreted correctly. To do this go to the Simulation
object and under the Options tab enter 2024-01-01 for the StartDate.
To use the data in Jaamsim we use a FileToMatrix object found in the Basic
Objects palette. Create a FileToMatrixObject, rename it PatientData, and
select the RC_50_week_data.txt file as the DataFile.
We can now access the data in the file by using the Value output of the Pa-
tientData object. The first place we will use this data is in the PatientArrival
object, so that patients arrive according to the data in the file, rather than
the distribution used previously. We first create two CustomOutputs (under
the options tab) on the PatientArrival object to make accessing the data
easier. CustomOutputs are similar to attributes but they can be expressions
(formulas) and are re-calculated at each time step in the simulation. The
two outputs we create will correspond to the data for the patient that has
just arrived (thisPatientData) and the patient that is going to arrive next
(nextPatientData). We need both of these so that we can calculate the
appropriate interarrival time between the patients.
Once we have created these outputs we use them in the InterArrivalTime,
and AssignmentList of the PatientArrival.

57

https://canvas.auckland.ac.nz/courses/121185/modules/items/2533119

Table 9.1: Update PatientArrival

Object Keyword Value
PatientArrival CustomOutputList { thisPatientData ‘[PatientData].Value(this.NumberAdded + 1)’ }

{ nextPatientData ‘[PatientData].Value(this.NumberAdded + 2)’ }
FirstArrivalTime [PatientData].Value(2)(2)
InterArrivalTime ‘this.nextPatientData(2) - this.thisPatientData(2)’
AssignmentList { ‘this.obj.priority= this.thisPatientData(3)’ }

{ ‘this.obj.checkInTime= this.thisPatientData(4)’ }
{ ‘this.obj.scanTime= this.thisPatientData(5)’ }

Note that in the AssignmentList we are assigning values from the data file
to attributes on the patient entity for priority, check in time, and scan time.
We will use these attributes later to determine how long those activities
take (the priority attribute is already used in the PriorityBranch).
To avoid getting an error these attributes need to be added to the Patien-
tEntity object. So update the AttributeDefinitionList of the PatientEntity to
include checkInTime and scanTime as well as the current priority, all with
a default of 0.
We now need to use the checkInTime and scanTime attributes to deter-
mine how long the check ins and scans take. Set the Duration of the
CheckIn activity to this.CurrentParticipants(1).checkInTime * 1[min].
this.CurrentParticipants refers to the group of entities that have just started
the activity (for check in this is a patient and a receptionist), and we use the
index 1 as the patient comes first, then we access the checkInTime attribute.
We then need to multiply this by 1[min] to convert the number into a time,
and use minutes as the attribute is in minutes.
Similarly for the Scan activity set the Duration to this.CurrentParticipants(1).scanTime
* 1[h], note that here we use 1[h] as the attribute is in hours.
Now, suppose we are interested in the time that patients spend waiting
for check in and for the scan. We can’t use the current PatientLogger as it
only records the total time that patients are in the system for. We could
add attributes for each time that we are interested in, and assign the value
when the entity gets to the relevant stage, and then use the PatientLogger
to log these attributes. We can instead use an EventLogger from the HCCM
palette. The EventLogger records the time that an entity starts each of
the activities that it participates in. So, create an EventLogger and call it
PatientEventLogger.
Then, to get the events recorded go to the PatientLeave object and under
the HCCM tab enter PatientEventLogger for the EventLogger keyword. Now
any entities that are sent to the patient leave will have the start times of
any activities that they participated in recorded.
We will now configure the Simulation object to run one long replication for
several scenarios. Under the Key Inputs tab enter 50w for the RunDuration,
this will make the simulation run for 50 weeks. We have to run one 50
week replication rather than 50 one week replications as Jaamsim cannot
read in a new file when each replication starts.
We want to try out four scenarios with either three or four CT machines, and
either one or two receptionists. As there are two factors we are changing
we use a ScenarioIndex with two numbers, the first indexes the scenarios
relating to the number of CT Machines, and the second those related to the
number of receptionists.

58

Since there are two options for the first index and two for the second we
enter 2 2 for the ScenarioIndexDefinitionList under the MultipleRuns
tab of the Simulation object. We will start from scenario 1 and end at
scenario 2 in both the indices so StartingScenarioNumber is 1-1 and End-
ingScenarioNumber is 2-2. We are going to run just one long replication
for each scenario so set the NumberOfReplications to 1.
Now Jaamsim will run 4 scenarios, but there won’t be any difference in
the model in each scenario. We need to make it so that the number of
CT Machines and Receptionists actually changes in each of the scenarios.
For the CT Machines we set the MaxNumber and InitialNumber on the
CTMachineArrival to [Simulation].ScenarioIndex(1) + 2, which gets
the value of the first scenario index and adds 2 to it. For the Receptionists
we can set theMaxNumber and InitialNumber on theReceptionistArrival
to [Simulation].ScenarioIndex(2), in this case we don’t need to add one
as the scenario index is the same as the number of receptionists we want to
use.
Nowwhen you run the model, the number of CTMachines and Receptionists
will change in each scenario.
Download and run the RC3_Analysis.R file, from Canvas under the Lab
7: Using Traces and Scenarios Assignment. You will have to update the
directory that it reads the data from and the name of the data file used.
The script splits each replication into 50 batches, each one week long, and
calculates the mean across the batches and the four scenarios of the 90th
percentile waiting time for both check in and scan within each of batch.
No warm-up period is used, so this assumes that being empty and idle is
a typical state of the system. Splitting into batches by week assumes that
each week is not correlated to the preceding and following weeks. You
should get the following output:

CheckInWaitTime ScanWaitTime
CTMachineScenario ReceptionistScenario
1 1 0.059406 0.536305

2 0.000000 0.548324
2 1 0.059396 0.154899

2 0.000000 0.170225

9.2 Creating an Executable JAR File

We can package the custom Java code in the extended control unit class
alongside the base Jaamsim and HCCM code into a jar file that can be run
without having to set up Java/VSCode. To do this click on the right arrow
that appears when you hover over the Java Projects tab, with the tooltip
‘Export Jar’. Then in the menu that appears, select GUIFrame as the main
class, then click OK with all of the options selected.
This should create a file called sim.jar inside the sim folder, alongside the
hccm and sim_custom folders. Copy the sim.jar file to your folder for this
lab (if you are following the structure here it is called RC3 and is in the
labs folder), and rename it to RC3.jar. It doesn’t really matter where you
put it, but it is much easier if the .jar file is in the same directory as the .cfg
file for this lab (radiology_lab_trace.cfg).
Then open a terminal in VSCode. There might be one already open, other-
wise you can open one by going to Terminal in the top left, and selecting
New Terminal. By default this will open a terminal in the sim folder. You
will need to navigate to the folder with the .jar and .cfg files in it using the

59

https://canvas.auckland.ac.nz/courses/121185/files/14739944?wrap=1

cd (change directory) command. If you are following the folder structure
described then should go up one level (cd ..), then into labs (cd labs), then
into RC3 (cd RC3).
Once you have a terminal open in the correct folder you can run the follow-
ing command java -jar RC3.jar radiology_lab_trace.cfg -h.
This command gets java to run the RC3.jar file which then opens and runs
the radiology_lab_trace.cfg model in headerless mode (denoted by the
-h). Headerless mode means that the visualisation of the simulation is
not shown, and allows the model to run more quickly. If it runs correctly
nothing will be printed, as seen in Figure 9.1.

Figure 9.1: Screenshot of Running the Jar File

Once you can run the model from the command line using the .jar file (you
can confirm that the model is actually running by checking the date/time
modified of the output files), you can get your lab signed off.

60

Part IV

Missing Data

10 Imputation Lab

In this lab, we will implement some of the techniques we have looked at
in class to deal with missing data. You will be using a dataset on paua, or
abalone. The data set includes the following variables:

Table 10.1: Abalone Dataset Variables

Name Data Type Measurement Unit Description
Type nominal – M, F, and I (infant)
Length continuous mm Longest shell measurement
Diameter continuous mm perpendicular to length
Height continuous mm with meat in shell
Whole.weight continuous grams whole abalone
Shucked.weight continuous grams weight of meat
Viscera.weight continuous grams gut weight (after bleeding)
Shell.weight continuous grams after being dried
Rings integer – +1.5 gives the age in years

Start by downloading the dataset.

1 import pandas as pd
2 import numpy as np
3 from scipy import stats
4

5 # URL of the Abalone dataset
6 url = "https://archive.ics.uci.edu/ml/machine-learning-databases/abalone/abalone.data"
7

8 # Column names for the dataset
9 column_names = ["Type", "Length", "Diameter", "Height", "Whole weight", "Shucked weight",

"Viscera weight", "Shell weight", "Rings"]↩→

10

11 # Load the dataset into a Pandas DataFrame
12 abalone_data = pd.read_csv(url, header=None, names=column_names)
13

14 # Display the first few rows of the dataset
15 print(abalone_data.head())

Type Length Diameter Height Whole weight Shucked weight \
0 M 0.455 0.365 0.095 0.5140 0.2245
1 M 0.350 0.265 0.090 0.2255 0.0995
2 F 0.530 0.420 0.135 0.6770 0.2565
3 M 0.440 0.365 0.125 0.5160 0.2155
4 I 0.330 0.255 0.080 0.2050 0.0895

Viscera weight Shell weight Rings
0 0.1010 0.150 15
1 0.0485 0.070 7
2 0.1415 0.210 9
3 0.1140 0.155 10
4 0.0395 0.055 7

62

We will investigate the age of the paua, so let’s start by randomly dropping
about 10% of the data. We will set a random seed, so that our output is
repeatable for debugging purposes, and make a copy of the original data
with NAs for 400 of the recorded values of the Rings variable.

1 data_missing = abalone_data.copy()
2 n_missing = 400
3 rng = np.random.default_rng(345678)
4 missing_ind = rng.choice(data_missing.index, size=n_missing,
5 replace=False)
6 data_missing.loc[missing_ind, 'Rings'] = np.nan

10.1 Complete Data

Start by computing a 95% confidence interval for the mean age of the paua
in the population using only the complete (non-missing) data (be careful
to account for the relationship between age and number of rings).

1 compl_mean = data_missing['Rings'].mean() + 1.5
2 compl_sem = stats.sem(data_missing['Rings'].dropna())
3 ci = stats.norm.interval(0.95, loc=compl_mean,
4 scale=compl_sem)
5

6 print(f"Complete data CI: {ci[0]:.3f}, {ci[1]:.3f}")

Complete data CI: 11.332, 11.539

10.2 Mean Imputation

Next, implement simple imputation to estimate the mean age, by making
a copy of the Ring column in data_missing, replacing the NAs with the
mean, and recomputing the 95% confidence interval. My output is below.

Mean imputation CI: 11.342, 11.529

10.3 Hotdeck Imputation

Now try using random draws, conditioning on Type. We can do this by
looping on the paua type, and replacing the missing values for each type by
an appropriately sized draw with replacement from the non-missing values
for that type. Reset the seed so that you can get consistent output when
re-running just this part.

1 rng = np.random.default_rng(678910)
2 imp_data = data_missing['Rings'].copy()
3 for t in data_missing['Type'].unique():
4 this_missing = ***A***
5 num_draws = ***B***
6 non_missing = data_missing.loc[imp_data.notna() &

(data_missing['Type'] == t), 'Rings']↩→

7 hot_deck = ***C***

63

8 imp_data[this_missing] = hot_deck
9

10 hd_imp_mean = imp_data.mean() + 1.5
11 hd_imp_sem = stats.sem(imp_data)
12 ci = stats.norm.interval(0.95, loc=hd_imp_mean,
13 scale=hd_imp_sem)
14

15 print(f"Hot deck: {ci[0]:.3f}, {ci[1]:.3f}")

Note, code fragment ***A*** produces True if the corresponding row is
of type t and has missing data, fragment ***B*** returns the number of
missing data for type t, and fragment ***C*** performs the appropriate
draw from the non-missing data (using the function rng.choice). The
output is shown below:

Hot deck CI: 11.346, 11.542

10.4 Bootstrap Replication

After implementing a couple of standard imputation techniques, let’s try
bootstrap replication. We will generate 200 bootstrap replicates, impute
missing data via random draws conditioning on Type, and thus include
the effect of missing data in our 95% CI for mean age of the population.
In the code that follows, missing code fragment ***A*** samples the
appropriate number of row indices with replacement, for using to build the
bootstrap replicate dataframe. Fragments ***B***, ***C*** and ***D***
then repeat the hotdeck imputation steps as performed in the previous
section.

1 rng = np.random.default_rng(891011)
2 imp_data = data_missing['Rings'].copy()
3 num_boots = 200
4 boot_reps = np.zeros(num_boots)
5

6 for i in range(num_boots):
7 this_boot_inds = ***A***
8 this_boot = data_missing.loc[this_boot_inds].reset_index()
9

10 for t in this_boot['Type'].unique():
11 this_missing = ***B***
12 num_draws = ***C***
13 non_missing = this_boot.loc[this_boot['Rings'].notna() &

(this_boot['Type'] == t), 'Rings']↩→

14 hot_deck = ***D***
15 this_boot.loc[this_missing, 'Rings'] = hot_deck
16

17 boot_reps[i] = this_boot['Rings'].mean() + 1.5

To compute our confidence interval, we will use the mean of the boot-
strapped estimates as our actual estimate, and build our confidence inter-
val from that value using the quantiles of the bootstrap replicates, as shown
in class.

64

1 bs_imp_mean = boot_reps.mean()
2

3 emp_ci = bs_imp_mean * 2 - np.quantile(boot_reps, [0.975,
0.025])↩→

4 print(f"Empirical bootstrap CI: {emp_ci[0]:.3f},
{emp_ci[1]:.3f}")↩→

Empirical bootstrap CI: 11.347, 11.562

Alterntaively we can build a confidence interval directly from our bootstrap
replicates based on the normal distribution:

1 bs_imp_sem = stats.sem(boot_reps)
2 norm_ci = stats.norm.interval(0.95, loc=bs_imp_mean,

scale=boot_reps.std())↩→

3

4 print(f"Normal bootstrap CI: {norm_ci[0]:.3f},
{norm_ci[1]:.3f}")↩→

Normal bootstrap CI: 11.336, 11.561

10.5 Multiple Imputation

Our final approach for building a confidence interval for the mean of the
variable with missing data is to implement multiple imputation. We will
condition on Type, and impute 500 values for each missing value, to build
a 95% CI for mean age of the population that reflects the uncertainty due
to missing data.

1 rng = np.random.default_rng(101112)
2 n_imps = 500
3 mi_est = np.zeros(n_imps)
4 mi_var = np.zeros(n_imps)
5

6 for i in range(n_imps):
7 imp_data = data_missing['Rings'].copy()
8 for t in data_missing['Type'].unique():
9 this_missing = ***A***

10 num_draws = ***B***
11 non_missing = data_missing.loc[imp_data.notna() &

(data_missing['Type'] == t), 'Rings']↩→

12 hot_deck = ***C***
13 imp_data[this_missing] = hot_deck
14

15 mi_est[i] = ***D***
16 mi_var[i] = ***E***

Note that code fragments ***A***, ***B*** and ***C*** again repeat the
hotdeck imputation steps as performed in the previous sections. Fragment
D computes the mean for iteration i. Fragment ***E*** computes
the variance of our estimator (the mean). To compute this note that:

65

+0@[-] = +0@
[1
<

∑<
1 -7

]
= 1

<2+0@
[∑<

1 -7
]

= 1
<2

∑<
1 +0@ [-7]

= 1
<2

∑<
1 f

= 1
<
f2

Of course we don’t know f2 as this is a population parameter, but an
unbiased estimate for it is 1

<−1
∑<

1 (-7 − -)2. We complete the analysis
by computing our estimate (***F***), the within imputation variance
(***G***), the between imputation variance (***H***), the total variance
(***I***), the estimate of fraction of information lost due to missing data
(***J***), and the degrees of freedom (***K***). We can then compute
the CI width using a t distribution.

1 pt_est = ***F***

11.44127316255686

1 w_est= ***G***

0.0025160028417431446

1 b_est = ***H***

0.0002021039894415928

1 t_est = ***I***

0.0027185110391636205

1 gamma = ***J***

0.07449232116518455

1 df = ***K***
2 mi_ci = stats.t.interval(0.95, df, pt_est, np.sqrt(t_est))

Multiple imputation CI: 11.339, 11.544

66

Part V

Conceptual Models

11 Output Buffering

11.1 Data

Table 11.1: List of Global Variables

Name Description Initial Value
NextPacketIdNum The Id number that will be

assigned to the next packet
1

% The set of all packets ∅

Table 11.2: List of Data Modules

Name Source Model Type Input Output
InterarrivalTime Problem De-

scription
Poisson Pro-
cess

Stochastic Mean (1 min) Sample from
distribution

PacketSize Problem De-
scription

Triangular
Distribution

Stochastic Min, Mode,
Max

Sample from
Distribution

TransmitRate Problem De-
scription

Constant Deterministic - Value

TransmitDuration Problem De-
scription

Function Deterministic Size, Rate Value (Size /
Rate)

BufferSize Experiment Constant Deterministic - Value

68

11.2 Components

Table 11.3: List of Entities

Entity Attributes
Packet ID

CurrentActivity
CurrentStart
Size

Link ID
CurrentActivity
CurrentStart

Table 11.4: List of Transitions

Participant Name From Event To Event
Packet P.1 Packet Arrives Wait for Link.Start

P.2 Wait for Link.End Transmit.Start
P.3 Wait for Link.End Packet Leaves
P.4 Transmit.End Packet Leaves

Link L.1 Link Created Wait for Packet.Start
L.2 Wait for Packet.End Transmit.Start
L.3 Transmit.End Wait for Packet.Start

Table 11.5: Activities

Activity Participants Event Type State Change
Wait for
Link

Packet (p) Start Scheduled 1 P.CurrentActivity = "Wait for Link" # default
2 P.CurrentStart = TIME # default
3 TRIGGER OnStartWaitForLink WITH p

End Controlled
Transmit Packet (p),

Link (l)
Start Controlled 1 SCHEDULE Transmit.End at TIME + TransmitDuration

(p.Size, Rate)

End Scheduled 1 START Packet Leaves WITH p # TRANSITION P.4
2 START Wait for Packet WITH l # TRANSITION L.3

Wait for
Packet

Link (l) Start Scheduled 1 TRIGGER OnStartWaitForPacket WITH l

End Controlled

Table 11.6: Events

Event Participants Type State Change
Simulation
Start

- Scheduled 1 SCHEDULE Link Created at TIME
2 SCHEDULE Packet Arrives at TIME + InterarrivalTime()

69

Table 11.6: Events

Event Participants Type State Change
Packet
Arrives

- Scheduled 1 CREATE Packet p
2 p.ID = NextPatIDNum
3 NextPatIDNum = NextPatIDNum + 1
4 p.Size = PacketSize()
5 SCHEDULE Packet Arrives at TIME + InterarrivalTime()
6 START Wait for Transmit WITH p # TRANSITION P.1

Packet
Leaves

Packet (p) Scheduled 1 Calculate statistics for p

Link
Created

- Scheduled 1 CREATE Link l
2 l.Conversion = Conversion
3 START Wait for Packet WITH l # TRANSITION L.1

Simulation
Finish

- Scheduled 1 Calculate any required statistics

70

11.3 Activity Diagrams

Packet
Arrives Wait for Link Transmit Packet

Leaves
P.1 P.2

P.3

P.4

Figure 11.1: Packet Activity Diagram

Link
Created

Wait for
Packet

Transmit

L.1

L.2 L.3

Figure 11.2: Link Activity Diagram

71

11.4 Logic

Table 11.7: OnStartWaitForLink

Triggered by: Packet p
1 waiting_packets = {p1 FOR p1 IN P IF p1.CurrentActivity = "Wait for Link"}
2 buffer_used = sum{p1.Size for p1 waiting_packets IF p1 != p}
3 IF L.CurrentActivity IS "Wait for Packet" THEN
4 START Transmit WITH p, L # TRANSITIONS P.2, L.2
5 ELSE IF buffer_used + p.size > BufferSize THEN
6 START Packet Leaves with p # TRANSITION P.3
7 END IF

Table 11.8: OnStartWaitForPacket

Triggered by: Link l
1 packets = {p FOR p IN P IF p.State = "Wait for Link"}
2 IF packets IS NOT empty THEN
3 p_hat = argmin{p.CurrentStart FOR p IN packets}
4 START Transmit WITH p_hat, l # TRANSITIONS P.2, L.2
5 END IF

72

12 Health Clinic

12.1 Data

Table 12.1: List of Global Variables

Name Description Initial Value
NextWalkUpIdNum The Id number that will be

assigned to the next walk-
up patient

1

NextApptIdNum The Id number that will
be assigned to the next ap-
pointment patient

1

NextDoctorIdNum The Id number that will be
assigned to the next doctor

1

, The set of all walk-up pa-
tients

∅

� The set of all appointment
patients

∅

� The set of all doctors ∅

Table 12.2: List of Data Modules

Name Source Model Type Input Output
InterarrivalTime Experiment Poisson Pro-

cess
Stochastic Mean Sample from

distribution
AppointmentTimes Experiment Lookup Deterministic Appointment

Number
Appointment
Time

ConsultationDuration Clinic Data Triangular
Distribution

Stochastic Min, Mode,
Max

Sample from
Distribution

73

12.2 Components

Table 12.3: List of Entities

Entity Attributes
Walk-up Patient ID

CurrentActivity
CurrentStart
ArrivalTime
WaitTime

Appointment Patient ID
CurrentActivity
CurrentStart
AppointmentNumber
AppointmentTime
WaitTime

Doctor ID
CurrentActivity
CurrentStart
Role
ConsultTime

Table 12.4: List of Transitions

Participant Name From Event To Event
Walk-up Patient W.1 Walk-up Arrives Walk-up Wait for Consultation.Start

W.2 Walk-up Wait for Consultation.End Consultation.Start
W.3 Consultation.End Walk-up Patient Leaves

Appointment Pa-
tient

A.1 Appt. Arrives Appt. Wait for Consultation.Start

A.2 Appt. Wait for Consultation.End Consultation.Start
A.3 Consultation.End Appt. Patient Leaves

Doctor D.1 Doctor Created Wait for Patient.Start
D.2 Wait for Patient.End Consultation.Start
D.3 Consultation.End Wait for Patient.Start

74

Table 12.5: Activities

Activity Participants Event Type State Change
Walk-up
Wait for
Consulta-
tion

Walk-up
Patient (w)

Start Scheduled 1 TRIGGER OnStartWalkupWaitForConsultation WITH w

End Controlled 1 w.WaitTime = TIME - w.CurrentStart

Consultation Walk-
up/Appointment
Patient (p),
Doctor (d)

Start Controlled 1 SCHEDULE Consultation.End at TIME +
ConsultationDuration()

End Scheduled 1 d.ConsultTime += TIME - d.CurrentStart
2 START Walk-up/Appt. Patient Leaves WITH p #

TRANSITION P.3
3 START Wait for Patient WITH d # TRANSITION D.3

Appt. Wait
for Consul-
tation

Appt. Patient
(a)

Start Scheduled 1 TRIGGER OnStartApptWaitForConsultation WITH a

End Controlled 1 a.WaitTime = TIME - a.CurrentStart

Wait for
Patient

Doctor (d) Start Scheduled 1 TRIGGER OnStartWaitForPatient WITH d

End Controlled

Table 12.6: Events

Event Participants Type State Change
Simulation
Start

- Scheduled 1 SCHEDULE Create Doctor at TIME
2 SCHEDULE Walk-up Patient Arrives at TIME + InterarrivalTime

()
3 SCHEDULE Appt. Patient Arrives at AppointmentTimes(1)

Walk-up
Patient
Arrives

- Scheduled 1 CREATE Walk-up Patient w
2 w.ID = NextWalkUpIDNum
3 NextWalkUpIDNum = NextWalkUpIDNum + 1
4 w.ArrivalTime = TIME
5 w.WaitTime = 0
6 SCHEDULE Walk-up Patient Arrives at TIME + InterarrivalTime

()
7 START Walk-up Wait for Consultation WITH w # TRANSITION W.1

Appt.
Patient
Arrives

- Scheduled 1 CREATE Appointment Patient a
2 a.ID = NextApptIDNum
3 NextWalkUpIDNum = NextWalkUpIDNum + 1
4 a.ArrivalTime = a.ID
5 a.AppointmentTime = TIME
6 SCHEDULE Appt. Patient Arrives at AppointmentTimes(a.ID + 1)
7 START Appt. Wait for Consultation WITH a # TRANSITION A.1

75

Table 12.6: Events

Event Participants Type State Change
Create
Doctor

- Scheduled 1 CREATE Doctor d
2 d.ID = NextDoctorIDNum
3 NextDoctorIDNum = NextDoctorIDNum + 1
4 d.ConsultTime = 0
5 IF d.ID = 1 THEN
6 d.Role = "Walk-up"
7 ELSE
8 d.Role = "Appointment"
9 END IF

10 IF d.ID < 2 THEN
11 SCHEDULE Create Doctor at TIME
12 END IF
13 START Wait for Patient WITH d # TRANSITION D.1

Walk-up
Patient
Leaves

Walk-up
Patient (w)

Scheduled 1 Calculate any required statistics for w

Appt.
Patient
Leaves

Appointment
Patient (a)

Scheduled 1 Calculate any required statistics for a

Simulation
Finish

- Scheduled 1 Calculate any required statistics

76

12.3 Activity Diagrams

Walk-up
Patient
Arrives

Walk-up
Wait for
Doctor

Consultation
Walk-up
Patient
Leaves

W.1 W.2 W.3

Figure 12.1: Walk-up Patient Activity Diagram

Appt.
Patient
Arrives

Appt. Wait
for Doctor Consultation

Appt.
Patient
Leaves

A.1 A.2 A.3

Figure 12.2: Appointment Patient Activity Diagram

Doctor
Created

Wait for
Patient

Consultation

D.1

D.2 D.3

Figure 12.3: Doctor Activity Diagram

77

12.4 Logic

Table 12.7: OnStartWalkupWaitForConsultation

Triggered by: Walk-up Patient w
1 waiting_walkup_docs = {d FOR d IN D IF d.Role = "Walk-up" AND d.CurrentActivity

= "Wait for Patient"}
2 waiting_appt_docs = {d FOR d IN D IF d.Role = "Appointment" AND d.

CurrentActivity = "Wait for Patient"}
3 IF waiting_walkup_docs IS NOT empty THEN
4 d_hat = argmin{d.CurrentStart FOR d IN waiting_walkup_docs}
5 START Consultation WITH w, d_hat # TRANSITIONS W.2, D.2
6 ELSE IF waiting_appt_docs IS NOT empty THEN
7 d_hat = argmin{d.CurrentStart FOR d IN waiting_appt_docs}
8 START Consultation WITH w, d_hat # TRANSITIONS W.2, D.2
9 END IF

Table 12.8: OnStartApptWaitForConsultation

Triggered by: Appointment Patient a
1 waiting_appt_docs = {d FOR d IN D IF d.Role = "Appointment" AND d.

CurrentActivity = "Wait for Patient"}
2 IF waiting_appt_docs IS NOT empty THEN
3 d_hat = argmin{d.CurrentStart FOR d IN waiting_appt_docs}
4 START Consultation WITH a, d_hat # TRANSITIONS A.2, D.2
5 END IF

Table 12.9: OnStartWaitForPatient

Triggered by: Doctor d
1 waiting_walkup_pats = {w FOR w IN W IF w.CurrentActivity = "Walk-up Wait for

Doctor"}
2 waiting_appt_pats = {a FOR a IN A IF a.CurrentActivity = "Appt. Wait for Doctor

"}
3 IF d.Role = "Appointment" and waiting_appt_pats IS NOT empty THEN
4 p_hat = argmin{p.CurrentStart FOR p IN waiting_appt_pats}
5 START Consultation WITH p_hat, d # TRANSITIONS A.2, D.2
6 ELSE IF waiting_walkup_pats IS NOT empty THEN
7 p_hat = argmin{p.CurrentStart FOR p IN waiting_walkup_pats}
8 START Consultation WITH p_hat, d # TRANSITIONS W.2, D.2
9 END IF

78

13 Radiology Clinic

13.1 Data

Table 13.1: List of Global Variables

Name Description Initial Value
NextPatIdNum The Id number that will be

assigned to the next patient
1

NextReceptionistIdNum The Id number that will be
assigned to the next recep-
tionist

1

NextCTMachineIdNum The Id number that will be
assigned to the next CT Ma-
chine

1

% The set of all patients ∅
' The set of all receptionists ∅
� The set of all CT Machines ∅

Table 13.2: List of Data Modules

Name Source Model Type Input Output
PatientInterarrivalTime Problem De-

scription
Poisson Pro-
cess

Stochastic Mean interar-
rival time

Sample from
distribution

NumReceptionists Problem De-
scription

Constant Deterministic - Value

NumCTMachines Problem De-
scription

Constant Deterministic - Value

CheckInTime Problem De-
scription

Uniform Dis-
tribution

Stochastic Min and max
time

Sample from
distribution

ScanTime Problem De-
scription

Log-normal
Distribution

Stochastic Mean and std.
dev.

Sample from
distribution

79

13.2 Components

Table 13.3: List of Entities

Entity Attributes
Patient ID

CurrentActivity
CurrentStart

Receptionist ID
CurrentActivity
CurrentStart

CT Machine ID
CurrentActivity
CurrentStart

Table 13.4: List of Transitions

Participant Name From Event To Event
Patient P.1 Arrive(P) Wait for check in.Start

P.2 Wait for check in.End Check in.Start
P.3 Check in.End Wait for scan.Start
P.4 Wait for scan.End Scan.Start
P.5 Scan.End Leave(P)

Receptionist R.1 Arrive(R) Wait for task(R).Start
R.2 Wait for task(R).End Check in.Start
R.3 Check in.End Wait for task(R).Start
R.4 Wait for task(R).End Leave(R)

CT Machine CT.1 Arrive(CT) Wait for task(CT).Start
CT.2 Wait for task(CT).End Scan.Start
CT.3 Scan.End Wait for task(CT).Start
CT.4 Wait for task(CT).End Leave(CT)

Table 13.5: Activities

Activity Participants Event Type State Change
Wait for
Check In

Patient (p) Start Scheduled 1 TRIGGER OnStartWaitForCheckIn WITH p

End Controlled
Check In Patient (p),

Receptionist
(r)

Start Controlled 1 SCHEDULE Check In.End at TIME + CheckInTime()

End Scheduled 1 START Wait for Scan WITH p # TRANSITION P.3
2 START Wait for Task (R) WITH r # TRANSITION R.3

Wait for
Scan

Patient (p) Start Scheduled 1 TRIGGER OnStartWaitForScan WITH p

End Controlled
Scan Patient (p),

CTMachine
(c)

Start Controlled 1 SCHEDULE Scan.End at TIME + ScanTime()

80

Table 13.5: Activities

Activity Participants Event Type State Change

End Scheduled 1 START Leave (P) WITH p # TRANSITION P.5
2 START Wait for Task (CT) WITH c # TRANSITION CT

.3

Wait for
Task (R)

Receptionist
(r)

Start Scheduled 1 TRIGGER OnStartWaitForTaskR WITH r

End Controlled
Wait for
Task (CT)

CTMachine
(c)

Start Scheduled 1 TRIGGER OnStartWaitForTaskCT WITH c

End Controlled

Table 13.6: Events

Event Participants Type State Change
Simulation
Start

- Scheduled 1 SCHEDULE Arrival (R) at TIME
2 SCHEDULE Arrival (CT) at TIME
3 SCHEDULE Arrival (P) at TIME + PatientInterArrival()

Arrival
(P)

Patient (p) Scheduled 1 p.ID = NextPatIDNum
2 NextPatIDNum = NextPatIDNum + 1
3 SCHEDULE Arrival (P) at TIME + PatientInterArrival()
4 START Wait for Check In WITH p # TRANSITION P.1

Leave (P) Patient (p) Scheduled 1 Calculate statistics for p

Arrival
(R)

Receptionist
(r)

Scheduled 1 r.ID = NextReceptionistIDNum
2 NextReceptionistIDNum = NextReceptionistIDNum + 1
3 IF NextReceptionistIDNum <= NumReceptionists THEN
4 SCHEDULE Arrival (R) at TIME
5 END IF
6 START Wait for Task (R) WITH r # TRANSITION R.1

Leave (R) Receptionist
(r)

Scheduled 1 Calculate statistics for r

Arrival
(CT)

CT Machine
(c)

Scheduled 1 c.ID = NextCTMachineIDNum
2 NextCTMachineIDNum = NextCTMachineIDNum + 1
3 IF NextCTMachineIDNum <= NumCTMachines THEN
4 SCHEDULE Arrival (CT) at TIME
5 END IF
6 START Wait for Task (CT) WITH c # TRANSITION CT.1

Leave
(CT)

CT Machine
(c)

Scheduled 1 Calculate statistics for c

81

13.3 Activity Diagrams

Arrive Wait for
check in Check in Wait for scan Scan Leave

Figure 13.1: Patient Activity Diagram

Arrive Wait for task

Check in

Leave

Figure 13.2: Receptionist Activity Diagram

Arrive Wait for task

Scan

Leave

Figure 13.3: CT Activity Diagram

82

13.4 Logic

Table 13.7: OnStartWaitForCheckIn

Triggered by: Patient p
1 receps = {r FOR r IN R IF r.State = "Wait for task (R)"}
2 IF receps IS NOT empty THEN
3 r_hat = argmin{r.CurrentStart FOR r IN receps}
4 START Check In WITH p, r_hat # TRANSITIONS P.2, R.2
5 END IF

Table 13.8: OnStartWaitForScan

Triggered by: Patient p
1 cts = {c FOR c IN C IF c.State = "Wait for task (C)"}
2 IF cts IS NOT empty THEN
3 c_hat = argmin{c.CurrentStart FOR c IN cts}
4 START Scan WITH p, c_hat # TRANSITIONS P.4, CT.2
5 END IF

Table 13.9: OnStartWaitForTaskR

Triggered by: Receptionist r
1 patients = {p FOR p IN P IF p.State = "Wait for Check In"}
2 IF patients IS NOT empty THEN
3 p_hat = argmin{p.CurrentStart FOR p IN patients}
4 START Check In WITH p_hat, r # TRANSITIONS P.2, R.2
5 END IF

Table 13.10: OnStartWaitForTaskCT

Triggered by: CTMachine c
1 patients = {p FOR p IN P IF p.State = "Wait for Scan"}
2 IF patients IS NOT empty THEN
3 p_hat = argmin{p.CurrentStart FOR p IN patients}
4 START Scan WITH p_hat, c # TRANSITIONS P.4, CT.2
5 END IF

83

14 Extended Radiology Clinic

14.1 Data

Table 14.1: List of Global Variables

Name Description Initial Value
NextPatIdNum The Id number that will be

assigned to the next patient
1

NextReceptionistIdNum The Id number that will be
assigned to the next recep-
tionist

1

NextCTMachineIdNum The Id number that will be
assigned to the next CT Ma-
chine

1

% The set of all patients ∅
' The set of all receptionists ∅
� The set of all CT Machines ∅

Table 14.2: List of Data Modules

Name Source Model Type Input Output
PatientInterarrivalTime Problem De-

scription
Poisson Pro-
cess

Stochastic Mean interar-
rival time

Sample from
distribution

PatientPriority Problem De-
scription

Discrete Dis-
tribution

Stochastic Priority Prob-
abilities

Sample from
distribution

NumReceptionists Problem De-
scription

Constant Deterministic - Value

NumCTMachines Problem De-
scription

Constant Deterministic - Value

CheckInTime Problem De-
scription

Uniform Dis-
tribution

Stochastic Min and max
time

Sample from
distribution

ScanTime Problem De-
scription

Log-normal
Distribution

Stochastic Mean and std.
dev.

Sample from
distribution

84

14.2 Components

Table 14.3: List of Entities

Entity Attributes
Patient ID

CurrentActivity
CurrentStart
Priority[0]

Receptionist ID
CurrentActivity
CurrentStart

CT Machine ID
CurrentActivity
CurrentStart
NeedMaintenance[0]

Table 14.4: List of Transitions

Participant Name From Event To Event
Patient P.1 Arrive(P) Wait for check in.Start

P.2 Wait for check in.End Check in.Start
P.3 Check in.End Wait for scan.Start
P.4 Wait for scan.End Scan.Start
P.5 Scan.End Leave(P)
P.6 Arrive(P) Wait for scan.Start

Receptionist R.1 Arrive(R) Wait for task(R).Start
R.2 Wait for task(R).End Check in.Start
R.3 Check in.End Wait for task(R).Start
R.4 Wait for task(R).End Leave(R)

CT Machine CT.1 Arrive(CT) Wait for task(CT).Start
CT.2 Wait for task(CT).End Scan.Start
CT.3 Scan.End Wait for task(CT).Start
CT.4 Wait for task(CT).End Leave(CT)
CT.5 Wait for task(CT).End Maintenance.Start
CT.6 Maintenance.End Wait for task(CT).Start

Table 14.5: Activities

Activity Participants Event Type State Change
Wait for
Check In

Patient (p) Start Scheduled 1 TRIGGER OnStartWaitForCheckIn WITH p

End Controlled
Check In Patient (p),

Receptionist
(r)

Start Controlled 1 SCHEDULE Check In.End at TIME + CheckInTime()

End Scheduled 1 START Wait for Scan WITH p # TRANSITION P.3
2 START Wait for Task (R) WITH r # TRANSITION R.3

85

Table 14.5: Activities

Activity Participants Event Type State Change
Wait for
Scan

Patient (p) Start Scheduled 1 TRIGGER OnStartWaitForScan WITH p

End Controlled
Scan Patient (p),

CTMachine
(c)

Start Controlled 1 SCHEDULE Scan.End at TIME + ScanTime()

End Scheduled 1 START Leave (P) WITH p # TRANSITION P.5
2 START Wait for Task (CT) WITH c # TRANSITION CT

.3

Wait for
Task (R)

Receptionist
(r)

Start Scheduled 1 TRIGGER OnStartWaitForTaskR WITH r

End Controlled
Wait for
Task (CT)

CTMachine
(c)

Start Scheduled 1 TRIGGER OnStartWaitForTaskCT WITH c

End Controlled
Maintenance CTMachine

(c)
Start Controlled 1 SCHEDULE Maintenance.End at TIME + 30 minutes

End Scheduled 1 c.NeedMaintenance = 0
2 START Wait for Task (CT) WITH c # TRANSITION CT

.6

Table 14.6: Events

Event Participants Type State Change
Simulation
Start

- Scheduled 1 SCHEDULE Arrival (R) at TIME
2 SCHEDULE Arrival (CT) at TIME
3 SCHEDULE Arrival (P) at TIME + PatientInterArrival()

Arrival
(P)

Patient (p) Scheduled 1 p.ID = NextPatIDNum
2 p.Priority = PatientPriority()
3 NextPatIDNum = NextPatIDNum + 1
4 SCHEDULE Arrival (P) at TIME + PatientInterArrival()
5 IF p.Priority <= 2 THEN
6 START Wait for Scan WITH p # TRANSITION P.6
7 ELSE
8 START Wait for Check In WITH p # TRANSITION P.1
9 END IF

Leave (P) Patient (p) Scheduled 1 Calculate statistics for p

Arrival
(R)

Receptionist
(r)

Scheduled 1 r.ID = NextReceptionistIDNum
2 NextReceptionistIDNum = NextReceptionistIDNum + 1
3 IF NextReceptionistIDNum <= NumReceptionists THEN
4 SCHEDULE Arrival (R) at TIME
5 END IF
6 START Wait for Task (R) WITH r # TRANSITION R.1

Leave (R) Receptionist
(r)

Scheduled 1 Calculate statistics for r

86

Table 14.6: Events

Event Participants Type State Change
Arrival
(CT)

CT Machine
(c)

Scheduled 1 c.ID = NextCTMachineIDNum
2 NextCTMachineIDNum = NextCTMachineIDNum + 1
3 IF NextCTMachineIDNum <= NumCTMachines THEN
4 SCHEDULE Arrival (CT) at TIME
5 END IF
6 START Wait for Task (CT) WITH c # TRANSITION CT.1

Leave
(CT)

CT Machine
(c)

Scheduled 1 Calculate statistics for c

Require
Mainte-
nance

CT Machine
(c)

Scheduled 1 c.NeedMaintenance = 1
2 TRIGGER OnRequireMaintenance WITH c

87

14.3 Activity Diagrams

Arrive Wait for
check in Check in Wait for scan Scan Leave

Figure 14.1: Patient Activity Diagram

Arrive Wait for task

Check in

Leave

Figure 14.2: Receptionist Activity Diagram

Arrive Wait for task

Scan

Maintenance

Leave

Figure 14.3: CT Activity Diagram

88

14.4 Logic

Table 14.7: OnStartWaitForCheckIn

Triggered by: Patient p
1 receps = {r FOR r IN R IF r.State = "Wait for task (R)"}
2 IF receps IS NOT empty THEN
3 r_hat = argmin{r.CurrentStart FOR r IN receps}
4 START Check In WITH p, r_hat # TRANSITIONS P.2, R.2
5 END IF

Table 14.8: OnStartWaitForScan

Triggered by: Patient p
1 cts = {c FOR c IN C IF c.State = "Wait for task (C)"}
2 IF cts IS NOT empty THEN
3 c_hat = argmin{c.CurrentStart FOR c IN cts}
4 START Scan WITH p, c_hat # TRANSITIONS P.4, CT.2
5 END IF

Table 14.9: OnStartWaitForTaskR

Triggered by: Receptionist r
1 patients = {p FOR p IN P IF p.State = "Wait for Check In"}
2 IF patients IS NOT empty THEN
3 p_hat = argmin{p.CurrentStart FOR p IN patients}
4 START Check In WITH p_hat, r # TRANSITIONS P.2, R.2
5 END IF

Table 14.10: OnStartWaitForTaskCT

Triggered by: CTMachine c
1 patients = {p FOR p IN P IF p.State = "Wait for Scan"}
2 IF c.NeedMaintenance = 1 THEN
3 START Maintenance WITH c # TRANSITION CT.5
4 IF patients IS NOT empty THEN
5 top_priority = max{p.Priority FOR p in patients}
6 top_patients = {p FOR p IN patients IF p.Priority = top_priority}
7 p_hat = argmin{p.CurrentStart FOR p IN top_patients}
8 START Scan WITH p_hat, c # TRANSITIONS P.4, CT.2
9 END IF

89

Table 14.11: OnCTMachineArrive

Triggered by: CT Machine c
1 SCHEDULE Require Maintenance WITH c at TIME + 8 hours

Table 14.12: OnRequireMaintenance

Triggered by: CT Machine c
1 SCHEDULE Require Maintenance WITH c at TIME + 8 hours
2 IF c.CurrentActivity = "Wait for task (C)" THEN
3 START Maintenance WITH c # TRANSITION CT.5
4 END IF

90

	Preface
	Practical Lab
	Operations System in Practice
	Making Paper Cars
	Reflections

	Conceptual Modelling
	HCCM Framework
	Understanding of the Problem Situation
	Identification of Modelling and General Objectives
	Defining Output Responses
	Defining Input Factors
	Model Content
	Identifying Entities
	Drawing Behavioural Paths
	Define the Data
	Define the Structure
	Define the Logic

	Assumptions and Simplifications

	Inputs, Outputs, and Behaviour
	Understanding of the Problem Situation
	Modelling Objectives
	General Objectives
	Defining Output Responses
	Defining Input Factors
	Identifying Entities
	Drawing Behavioural Paths

	Data, Structure, and Logic
	Define the Data
	Define the Structure
	Define the Logic
	Assumptions and Simplifications

	Jaamsim
	Setting Up VSCode and Java
	Setting Up JaamSim and HCCM
	Prerequisites
	Create the Project Folder Structure
	Clone HCCM into the project folder
	Create files to load HCCM and customised components
	Create a VSCode Java Project
	Configure Source Folders
	Configure JDK
	Configure Libraries
	Integrate with JaamSim
	Run Custom JaamSim
	Running an HCCM Model

	Radiology Clinic
	Experiments
	Jaamsim Model
	Creating Model Objects
	Configuring Objects

	Model Logic – Java
	Model Output
	Task

	Extended Radiology Clinic
	Experiments
	Jaamsim Model
	Task

	Using Traces and Scenarios
	Jaamsim Model
	Creating an Executable JAR File

	Missing Data
	Imputation Lab
	Complete Data
	Mean Imputation
	Hotdeck Imputation
	Bootstrap Replication
	Multiple Imputation

	Conceptual Models
	Output Buffering
	Data
	Components
	Activity Diagrams
	Logic

	Health Clinic
	Data
	Components
	Activity Diagrams
	Logic

	Radiology Clinic
	Data
	Components
	Activity Diagrams
	Logic

	Extended Radiology Clinic
	Data
	Components
	Activity Diagrams
	Logic

